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ABSTRACT

Recent findings indicate that allele-specific expression (ASE) at specific cancer 
driver gene loci may be of importance in onset/progression of the disease. Of 
particular interest are loss-of-function (LOF) of tumor suppressor gene (TSGs) alleles. 
While LOF tumor suppressor mutations are typically considered to be recessive, if 
these mutant alleles can be significantly differentially expressed relative to wild-type 
alleles in heterozygotes, the clinical consequences could be significant.

LOF TSG alleles are shown to be segregating at high frequencies in world-wide 
populations of normal/healthy individuals. Matched sets of normal and tumor tissues 
isolated from 233 cancer patients representing four diverse tumor types demonstrate 
functionally important changes in patterns of ASE in individuals heterozygous for LOF 
TSG alleles associated with cancer onset/progression. While a variety of molecular 
mechanisms were identified as potentially contributing to changes in ASE patterns in 
cancer, changes in DNA copy number and allele-specific alternative splicing possibly 
mediated by antisense RNA emerged as predominant factors.

In conclusion, LOF TSGs are segregating in human populations at significant 
frequencies indicating that many otherwise healthy individuals are at elevated risk of 
developing cancer. Changes in ASE between normal and cancer tissues indicates that 
LOF TSG alleles may contribute to cancer onset/progression even when heterozygous 
with wild-type functional alleles.
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INTRODUCTION

The long-standing belief that cancer is a genetic 
disease driven by mutations in a select set of oncogenes 
and/or tumor suppressor genes (aka, “cancer driver” 
genes) [1–3], has been augmented in recent years to 
incorporate the auxiliary contribution of changes in a 
variety of regulatory controls [4–6]. Findings indicate 
that these additional regulatory controls may, in at least 
some instances, manifest as allele-specific expression 
(ASE) at specific cancer driver gene loci [7, 8]. ASE is 

the phenomenon whereby two or more gene alleles are 
differentially expressed with respect to one another [9]. 
The potential clinical consequences of ASE have been 
previously documented [10] including emerging evidence 
for the potential contribution of ASE to cancer [8, 11].

If cancer driver mutations can be transcriptionally 
repressed/de-repressed in an allele-specific manner, it 
follows that mutations in these genes may be necessary 
but not always sufficient for onset and progression of the 
disease. For example, cancer driver mutations may, to a 
greater or lesser extent, be repressible and thus segregating 
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at higher than expected frequencies in populations of 
normal healthy individuals. In addition, regulatory 
modulations in the ASE of cancer driver mutations may 
themselves, in at least some instances, be a significant 
contributor to cancer onset and progression. Of particular 
interest, in this regard, are those genes where loss-of-
function (LOF) mutations have been shown to drive 
cancer onset/progression. This class of cancer driver 
genes is commonly known as tumor suppressor genes 
(TSGs) because a functional wild-type allele is considered 
sufficient to “suppress” the cancer driver effect of LOF 
alleles in heterozygotes. While LOF tumor suppressor 
mutations are typically considered to be recessive [12], 
if these mutant alleles can be significantly differentially 
expressed relative to wild-type alleles in heterozygotes, 
the clinical consequences could be significant.

In this study, we first demonstrate that LOF TSG 
alleles are segregating in world-wide populations of 
normal/healthy individuals at relatively high frequencies, 
thereby establishing the potential importance of these 
genes in pre-disposing otherwise healthy individuals to 
cancer. To directly evaluate the possible contribution of 
ASE of tumor suppressor LOF alleles in cancer onset/
progression, we analyzed matched sets of normal 
and tumor tissues isolated from 233 cancer patients 
representing four diverse tumor types. The results 
indicate that there are functionally important changes in 
ASE in individuals heterozygous for LOF TSG alleles 
associated with cancer onset/progression. While a variety 
of molecular mechanisms were identified as potentially 
contributing to changes in ASE in cancer, changes 
in DNA copy number and allele-specific alternative 
splicing possibly mediated by antisense RNA emerged as 
predominant factors.

RESULTS

Tumor suppressor mutations are abundant in 
human populations

The Catalogue Of Somatic Mutations In Cancer 
(COSMIC) is the world’s largest database of somatic 
mutations associated with cancer onset and progression 
[13]. To determine the extent to which cancer associated 
mutations are segregating in the general human population, 
the genomic locations of all coding mutations in COSMIC 
census genes were intersected with sequence variants 
identified in individuals comprising the Phase 3 release of 
the One Thousand Genomes Project (1KGP). The Phase 
3 release catalogues all of the genetic variants present 
in 2504 putatively healthy individuals, representing a 
diversity of racial and ethnic groups randomly selected 
from 26 human populations around the world.

Remarkably, all individuals in the 1KGP were found 
to contain at least 31 homozygous and 68 heterozygous 
COSMIC census mutations (Supplementary Figure 1). 

In total, 2,296 and 3,123 COSMIC census mutations 
were found in oncogenes and tumor suppressor genes, 
respectively, in healthy individuals. However, since the 
functional significance of all COSMIC mutations is not 
yet known and the fact that gain-of-function (dominant) 
mutations are difficult to unambiguously identify [14], we 
focused our subsequent analyses on COSMIC mutations 
in TSGs that could be definitively classified as deleterious 
(i. e., non-sense, frame-shift, deletion mutations), along 
with all missense mutations predicted to be damaging 
by both The Sorting Intolerant from Tolerant (SIFT) [15] 
and Polymorphism Phenotyping v2 (PolyPhen-2) [16] 
algorithms. Employing this more conservative metric, 
448 LOF COSMIC census mutations (28 truncating, 420 
missense predicted damaging) in TSGs were identified 
(Supplementary Dataset 1), of which ~93% of individuals 
carried at least one (Figure 1A). These 448 LOF mutations 
mapped to 137 different TSGs in at least one individual 
and four of these TSGs, Cbl Proto-Oncogene C (CBLC), 
Cadherin 11 (CDH11), Leucine Zipper Like Transcription 
Regulator 1 (LZTR1), and Tet Methylcytosine Dioxygenase 
2 (TET2) had LOF mutations in >25% of the population 
(Figure 1B). Collectively, these findings indicate that 
genetic variants previously characterized as “cancer driver” 
mutations are segregating at relatively high frequencies in 
populations of individuals not afflicted with the disease.

A minority (<20%) of TSGs display genetic 
profiles in the cancer samples that are consistent 
with Knudson’s two-hit hypothesis

Given the relative abundance of TSG LOF alleles in 
human populations, we utilized The Cancer Genome Atlas 
(TCGA) database [17] to explore the possible contribution 
of these genes to cancer onset and/or progression by 
examining matched sets of cancer and normal tissues 
collected from 233 cancer patients representative of four 
diverse cancer types (breast invasive carcinoma, head and 
neck squamous cell carcinoma, lung adenocarcinoma, and 
thyroid carcinoma). According to a model first proposed 
by Alfred Knudson in 1971 [18], newly arising LOF TSG 
mutant alleles, being recessive, can be carried by normal 
cells with little significant negative effect. According to 
this model, acquisition of a second LOF mutation in the 
alternate wild-type allele is pre-requisite for tumor onset.

To test this hypothesis in our dataset, we genotyped 
all samples and identified TSGs that were heterozygous 
for a LOF mutation in normal tissues but that have 
acquired a secondary LOF mutation in the wild-type 
allele in the tumor samples. In total we found that only 46 
of the 233 cancer patients (19.7%) were associated with 
acquisition of homozygosity in cancer for LOF alleles at 
TSG loci consistent with Knudson’s “two-hit” hypothesis. 
These results indicate that the vast majority of TSGs 
heterozygous for wild-type and LOF alleles in normal 
tissues remain heterozygous in tumor tissue. However, if 
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recessive LOF alleles can be significantly overexpressed 
relative to the wild-type alleles in an ASE fashion, LOF 
TSGs may be significant contributors to cancer onset/
progression even in the heterozygous state.

The proportion of LOF mutations displaying 
ASE is significantly elevated in cancer tissue 
samples

To explore the possible contribution of ASE in 
matched sets of normal and cancer tissues, we employed 
DNA-seq data from the TCGA database to identify 
all heterozygous sites in the exome and subsequently 
leveraged complementary RNA-seq data to compare the 
expression of wild-type or “reference” (ref) vs LOF mutant 
or “alternative” (alt) alleles at those loci (Supplementary 
Figure 2).

The proportion of COSMIC census mutations in 
TSGs displaying ASE was found to be significantly higher 
in the cancer relative to normal tissues for breast invasive 
carcinoma, head and neck squamous cell carcinoma, 
and lung adenocarcinoma (P < 3.11 × 10−10) (Figure 2). 
Thyroid carcinoma was the only cancer type not displaying 
a significant difference, perhaps because these cancers are 
typically associated with a relatively low mutation rate 
[19] resulting in relatively fewer genetic alterations.

To determine if this regulatory change was limited 
to TSG loci, we computed ASE for all heterozygous single 
nucleotide polymorphisms (het-SNPs) exome-wide. We 
found that all genes, on average, contain a significantly 

higher proportion of het-SNPs displaying ASE in breast, 
lung, head and neck (P < 3.46 × 10−15) and thyroid (P 
< 0.005) tumors than normal samples (Figure 2). Thus, 
dysregulation in cancer, at least as manifest by ASE, is 
not limited to TSGs but extends to genes not previously 
identified as being implicated in tumorigenesis.

Differences in patterns of ASE between normal 
and tumor tissues includes but is not limited to 
TSGs

Changes in the relative expression of wild-type 
(ref) alleles vs. mutant (alt) alleles between normal and 
cancer tissues may manifest in one of six alternative ASE 
patterns (Figure 3A): Pattern 1: No significant difference 
in ASE (ref=alt) in normal tissues but significant ASE 
(ref<alt) in cancer tissues; Pattern 2: Significant ASE in 
normal tissues (ref>alt) but no significant ASE (ref=alt) 
in cancer tissues; Pattern 3: Significant ASE in normal 
sample (ref>alt) and significant ASE in tumor sample 
(ref<alt); Pattern 4: No significant ASE in normal tissues 
(ref=alt) but significant ASE in cancer tissues (ref>alt); 
Pattern 5: Significant ASE (ref<alt) in normal tissues but 
no significant ASE in cancer tissues (ref=alt); Pattern 
6: Significant ASE in normal (ref<alt) and in cancer 
tissues (ref>alt). Patterns 1-3 are potentially of the most 
significance to cancer onset/progression because, in each 
case, the expression of the cancer driver LOF mutant (alt) 
allele is expressed at a higher level than the wild-type 
allele in cancer tissues.

Figure 1: Distribution of LOF COSMIC census mutations in TSGs of the 1KGP. Cancer associated mutations were identified 
in the 1000 genomes population (1KGP) as detailed in the Materials and Methods. (A) Pie chart depicting the percent of the 1KGP 
containing deleterious cancer associated mutations in at least one TSG. (B) Four TSGs most frequently mutated (LOF) in 1KGP.
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The observed changes in ASE between matched sets 
of normal and cancer tissues for each of the 233 patients, 
grouped into their respective Patterns, is presented in 
Table 1. A significant percentage of mutations in TSGs 
were found to display various patterns of ASE (FDR = 5%, 
P < 0.005; breast 14.9%, head and neck 16.0% and lung 
19.6%) with Patterns 1 and 4 being the most predominant 
(see also Figure 3B). Thyroid cancer again stood out as an 
outlier where only 4.1% of mutations in TSGs were found 
to display ASE with Patterns 1 (2.3%) and 5 (1.3%) being 
nearly equally abundant.

When the analysis was extended to include all 
transcribed genes (“%Total SNPs” in Table 1), a similar 
trend was observed, where 14.8%, 16.6% and 18.3% of all 
het-SNPs were found to display ASE in breast, head and 
neck and lung cancers, respectively. Thyroid cancer was 
again an outlier with only 4.5% of all transcribed genes 
displaying ASE (Figure 3C). Collectively these results 
indicate that changes in ASE in cancer are widespread and 
not limited to TSGs.

To explore this apparent dysregulation of COSMIC 
census mutations in TSGs further, we aggregated our SNP 
ASE data to quantify ASE of the entire allele of a gene 
by employing the Meta-analysis Based Allele-Specific 
Expression Detection (MBASED) protocol [8]. We 
found 14.4%, 17.9%, 20.4% and 5.7% of all TSGs show 
ASE in breast, head and neck, lung and thyroid cancers, 

respectively (Supplementary Table 1). These results are 
consistent with the relative levels of ASE associated with 
individual SNPs in these cancers with Pattern 1 again 
emerging as a predominant pattern (9.1%, 11.1%, 13.2%, 
and 2.8%) (Supplementary Table 1).

One example of those TSGs displaying ASE in 
cancer is the Human Leukocyte Antigen A1 gene (HLA-A). 
HLA-A has been previously identified as a hotspot for ASE 
activity [20], likely due to the high genetic variability 
that is well-documented in the major histocompatibility 
complex [21]. We detected ASE in the HLA-A gene in 
20% of patient samples including nucleotide positions not 
previously reported to display ASE [22].

Another example is Tumor Protein P53 (TP53) 
that displayed the most changes in ASE within the 
breast cancer patients (57.9% of all patients) displaying 
Pattern 4 63.6% of the time (Figure 4). Additionally, 
breast cancer implicated TSGs Breast cancer type 1 
susceptibility protein (BRCA1) and Cadherin 1 (CDH1) 
were found to display changes in ASE in 15.4% and 
32.4% of breast tumors, respectively, frequently 
displaying Pattern 1 (Figure 4). Interestingly, Zinc Finger 
Protein 331 (ZNF331) was the only TSG predominately 
displaying Pattern 2 (Figure 4). A previous study [23] 
has shown ZNF331 to display large amounts of ASE in 
breast cancer, citing genomic imprinting as a possible 
explanation [24].

Figure 2: Distribution of the proportion of ASE loci. Allele counts were generated for normal and primary tumor tissue pairs 
for breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma (HNSC), lung adenocarcinoma (LUAD), and thyroid 
carcinoma (THCA) via analysis of RNA-Seq as described in the Materials and Methods section. Boxplots show the distribution of the 
proportion of heterozygous COSMIC Census mutations in tumor suppressor genes (TSGs), all heterozygous SNPs in non-tumor suppressor 
genes (Non-TSG) and all heterozygous single nucleotide polymorphisms exome-wide (All het-SNPs) with significant ASE (FDR = 5%,  
P < 0.005) in normal (blue) and tumor (red) samples (***P < 3.46 × 10−15; **P < 0.005).

http://
http://


Oncotarget466www.oncotarget.com

The four TSGs: CBLC, CDH11, LZTR1, and TET2 
previously shown to be most frequently mutated in 1KGP 
(Figure 1B) were also observed to display changes in 
ASE in breast cancer (Figure 4). Similar trends in the 
frequency of ASE Patterns among TSGs were observed 
in head and neck, lung, and thyroid cancers, with thyroid 
again sporting the least amount of ASE (Supplementary 
Figure 3).

Changes in DNA allelic ratios may explain up 
to 35% of the observed changes in ASE between 
normal and cancer samples

Perhaps the most straight-forward explanation of the 
observed changes in ASE in cancer is that it reflects the 
underlying changes in allele counts on the DNA level. For 
example, it is known that the duplication or deletion of 

Figure 3: ASE SNP patterns. Allele counts were generated for normal and primary tumor tissue pairs for breast invasive carcinoma, 
head and neck squamous cell carcinoma, lung adenocarcinoma and thyroid carcinoma via analysis of RNA-Seq as described in the Materials 
and Methods section. Sites demonstrating significantly different ASE ratios (P < 0.05) between normal and tumor sample pairs are color 
coded by expression pattern as demonstrated in the top panel. (A) Six ASE patterns of interest were analyzed; Pattern 1: No significant 
difference in ASE (ref=alt) in normal tissues but significant ASE (ref<alt) in cancer tissues; Pattern 2: Significant ASE in normal tissues 
(ref>alt) but no significant ASE (ref=alt) in cancer tissues; Pattern 3: Significant ASE in normal sample (ref>alt) and significant ASE in 
tumor sample (ref<alt); Pattern 4: No significant ASE in normal tissues (ref=alt) but significant ASE in cancer tissues (ref>alt); Pattern 5: 
Significant ASE (ref<alt) in normal tissues but no significant ASE in cancer tissues (ref=alt); Pattern 6: Significant ASE in normal (ref<alt) 
and in cancer tissues (ref>alt). Significant ASE (FDR = 5%, P < 0.005) was determined using a binomial test within samples in order to 
group loci into patterns. (B) Reference allele ratios (ref/total) for all COSMIC Census loci in TSGs intersecting normal and tumor sample 
pairs, for 233 TCGA participants are shown here. (C) Reference allele ratios (ref/total) for all loci intersecting normal and tumor sample 
pairs, for 233 TCGA participants are shown here.
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alleles on the DNA level can contribute to ASE in cancer 
[7, 25]. In addition, the polyclonal heterogeneity of most 
tumors can manifest as an imbalance in DNA allele counts 
and associated ASE changes in analyses carried out on 
bulk tumor samples.

To explore the extent to which changes in DNA copy 
number may be contributing to the observed ASE in the 
samples, we downloaded whole-exome sequencing data 
(WXS) for nine randomly selected patients representing each 
of the three cancer types displaying the highest level of ASE 
(breast invasive carcinoma, lung adenocarcinoma, and head 
& neck squamous cell carcinoma) (Supplementary Table 2). 
We ensured these individuals displayed ASE in COSMIC 
genes (Supplementary Figure 4) and that their ASE was 
evenly spread throughout the genome (Supplementary 
Figure 5). We found that, on average, 35.2% (45.7% Breast, 
25.8% Head and Neck, and 20.5% Lung) of ASE genes 
displayed DNA allele counts that correlated with RNA allele 
counts (Table 2). Further investigation of these samples, 

however, revealed that only 10% of these genes displayed 
copy number duplications potentially accounting for their 
ASE (Figure 5A). Collectively these findings indicate that 
while, on average, a large fraction of the observed changes 
in ASE may be accounted for by corresponding changes in 
DNA allele counts, many instances of ASE in the cancer 
samples are likely attributable to allele-specific changes in 
gene regulation.

Allele-specific cis-regulatory variation may 
account for a relatively small fraction of 
observed changes in ASE between normal and 
cancer samples

Allele-specific regulatory changes in gene 
expression could be explained by sequence variation 
mapping to cis-regulatory regions located up- or down-
stream of affected genes [26–28]. To explore the extent 
to which allele-specific cis-regulatory variation may 

Table 1: Percent of SNPs displaying ASE in 233 TCGA patients

Pattern % Total SNPs % All COSMIC % TSG % Oncogene % Fusion
B

R
C

A
1 7.3 7.6 7.3 7.0 8.3
2 0.4 0.8 0.3 0.4 1.4
3 0.1 0.2 0.0 0.0 0.3
4 3.8 4.1 3.7 3.4 4.8
5 2.6 2.5 2.8 2.2 2.7
6 0.5 0.5 0.8 0.4 0.4

No ASE 85.2 84.4 85.1 86.6 82.1

H
N

SC

1 8.7 9.7 10.5 10.1 8.3
2 0.4 0.4 0.0 0.0 0.9
3 0.2 0.3 0.0 0.0 0.6
4 4.6 4.5 3.7 4.2 4.7
5 2.1 1.7 1.3 1.2 2.0
6 0.7 1.0 0.5 0.9 1.0

No ASE 83.4 82.5 83.9 83.5 82.4

L
U

A
D

1 9.7 10.7 9.2 9.8 12.0
2 0.3 1.0 0.1 0.0 2.0
3 0.2 1.0 0.0 0.0 1.9
4 5.4 6.8 7.0 6.5 6.9
5 1.9 2.3 2.2 1.6 2.7
6 0.7 0.8 1.1 0.6 0.9

No ASE 81.7 77.4 80.4 81.5 73.5

T
H

C
A

1 2.1 2.3 2.3 1.7 2.6
2 0.2 0.5 0.0 0.1 1.0
3 0.0 0.0 0.0 0.0 0.0
4 0.5 0.8 0.5 0.4 1.1
5 1.6 1.9 1.3 2.0 2.1
6 0.1 0.0 0.0 0.0 0.0

No ASE 95.5 94.5 95.9 95.8 93.2
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account for ASE in cancer, we identified expression-
quantitative trait loci (eQTLs) present in six of the nine 
patients’ normal and tumor samples using the Genotype-
Tissue Expression Project’s (GTEx) single tissue cis-eQTL 
data available for breast and lung tissue [29]. eQTLs are 
regions of the genome containing DNA sequence variants 
previously established to regulate gene expression levels 
[30]. Genes previously established to be regulated by at 
least one eQTL are classified as eGenes [31].

Genes displaying ASE in our study were found to 
be significantly enriched for eGenes relative to genes not 
displaying ASE (P = 0.018) (Supplementary Figure 6). 
This finding was pronounced for breast (P = 2.56 × 10−6) 
and lung cancer (P = 6.22 × 10−4) patients (Supplementary 
Figure 6). However, collectively only 24% of genes 
displaying ASE in our dataset are eGenes and just 3% of 
ASE eQTLs are ASE-specific. Moreover, we found that 
the expression slope of an eQTL is not often correlated 
with the allelic expression of a gene (1.8%; Figure 5B; 
Supplementary Table 3). For example, consider the 

heterozygous eQTL variant (rs10654) mapping to the 
3′ UTR of the NUP54 gene in both normal and tumor 
samples of breast cancer patient 2 (TCGA-BH-A0BW). 
Despite being heterozygous, this eQTL is not associated 
with ASE in the normal tissue but is associated with 
ASE in cancer tissue where the alternative haplotype is 
overexpressed and in phase with the highly expressed 
alternative eQTL allele (Supplementary Figure 7A).

We also pursued the eQTLs differing in genotype 
between normal and tumor samples for specific evidence of 
cis-regulation. While infrequent, we did find several notable 
cases where eQTL genotypes correlated with ASE. Shown 
in Supplementary Figure 7B, is a model for how cis-eQTLs 
may be responsible for the intragenic ASE we observed. 
In this particular example, three separate eQTLs within 
a 50bp region (rs34176173, rs12085114, rs34016668) 
are found ~4.8k base pairs from the 3′ UTR of the gene 
NME7 in breast invasive carcinoma patient 3 (TCGA-BH-
A0DT). The eQTL is homozygous for the ref allele in the 
normal sample that does not show ASE, and heterozygous 

Figure 4: Tumor suppressor genes with ASE in breast cancer patients. Gene level ASE was computed as described in the 
Materials and Methods section. The proportion of breast cancer patients with ASE in 115 TSGs are shown here, colored by ASE Pattern.
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in the tumor sample. The eQTL alternative allele that is 
associated with high expression of NME7 is present on the 
alt haplotype being overexpressed. Further, all three eQTLs 
are in linkage disequilibrium with the ASE SNP (r > 0.42) 
suggesting they segregate together. We found four additional 
cases where cis-eQTLs could account for ASE but none of 
these were associated with COSMIC census genes.

Collectively, the above findings indicate that while 
allele-specific cis-regulatory variation may account for 
some instances of ASE, it alone does not explain the vast 
majority (>75%) of instances of ASE in our dataset.

Changes in methylation do not appear to be a 
major contributor to the observed changes in 
ASE between normal and cancer samples

Another possibility is that ASE is regulated 
epigenetically. For example, it has been previously 
suggested that epigenetic inactivation of one of the two 
alleles could result in ASE [32]. Epigenetic effects across 
chromosomes are often regionally associated with CpG 
repeats or “CpG islands” [33]. To determine if genes 
displaying ASE in our dataset display evidence of regional 
chromosomal clustering, we visualized the genomic 
locations of ASE for nine patients on a genome ideogram 
(Supplementary Figure 5). The results provide no evidence 
for regional chromosomal clustering indicative of regional 
epigenetic effects.

To further search for evidence of epigenetic 
involvement in ASE in our dataset, we analyzed global 
DNA methylation in normal and cancer tissues since this 
is a common mechanism by which gene transcription 
can be repressed epigenetically [34, 35]. Methylation 
data were downloaded from TCGA for seven of the nine 
patients described above and used to compare genes 
that had a significant change in methylation with genes 
showing a significant change in ASE. We found that 
only 10.2% of genes displaying ASE also displayed 

significant differences (>1.3-fold) in methylation between 
normal and tumor tissues (Figure 5C; Supplementary 
Table 3). Although these results indicate that changes 
in methylation are not likely to be playing a significant 
role in the ASE detected in patient samples, the analysis 
cannot be considered definitive because the methylation 
data provided by TCGA are not allele specific.

A significant fraction of changes in ASE between 
normal and cancer may be a reflection of 
underlying alternative-splicing events

A recent study has implicated allele-specific 
alternative splicing as a potentially significant factor in 
ASE [36]. For example, consider a scenario where an 
allele-specific exon-skipping event occurs more frequently 
in a cancer tissue than normal (Supplementary Figure 8). 
This would result in a negligible difference in the level 
of transcripts containing the wild-type (ref) and LOF 
mutant (alt) allele in normal but significantly fewer 
transcripts containing the wild-type allele (“T allele”, in 
Supplementary Figure 8) in cancer.

To explore the possibility that allele-specific 
alternative splicing may be contributing to the observed 
ASE in patient samples, we leverage previously computed 
isoform counts for TCGA patient data [37]. Specifically, 
we sought to determine if there is a significant increase 
in exon skipping in genes displaying ASE. The results 
indicate that 46% of SNPs displaying changes in ASE 
between normal and cancer correlate with an increased 
frequency of exon-skipping events (i. e., ≥1.5-fold 
increase in expression of reads consistent with exon-
skipping events) (Table 3; Figure 5D).

While these results suggest that allele-specific 
alternative splicing may be a significant contributor to 
ASE, it does not provide a mechanism as to how two 
variant alleles from the same gene may be alternatively 
spliced. One possibility is that the point mutations or 

Table 2: ASE patterns potentially explained by DNA counts

Patient ASE SNPs explained by DNA counts Total ASE SNPs Percentage of ASE correlated
Breast 1 526 1336 39.4
Breast 2 719 1411 51.0
Breast 3 177 367 48.2
Head & Neck 1 275 930 29.6
Head & Neck 2 179 674 26.6
Head & Neck 3 217 993 21.9
Lung 1 56 233 24.0
Lung 2 47 155 30.3
Lung 3 11 167 6.6
Total 2207 6266 35.2
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indels that distinguish mutant LOF (alt) alleles from 
wild-type (ref) alleles map to consensus splice sites or 
other cis-regulatory locations known to be involved in 
the splicing process [38]. However, of the 100,852 SNPs 
associated with changes in ASE between normal and 
tumor, only 1.4% (1,418/100,852) map to consensus 
splice sites (716 in acceptor G, 702 in donor AG) 
(Supplementary Dataset 2).

A second possible mechanism that may explain 
how two variant alleles from the same gene may be 
alternatively spliced emerges from previous studies 
showing that splicing events can be experimentally 
induced in vivo by exposing primary transcripts to even 
small fragments of antisense RNAs that pair with known 
splice sites in the primary transcript [39, 40]. We reasoned 
that if such allele-specific antisense RNAs are being 
differentially produced in normal and cancer tissues, 
it may explain observed differences in allele-specific 
splicing and consequent differences in ASE.

To test this hypothesis, we estimated the levels of 
antisense RNAs mapping to splice sites adjacent to allele-
specific alternative-splice events. The results presented in 
Table 3 demonstrate a notable increase in levels of antisense 
RNA in genes displaying allele-specific alternative-splice 
events associated with ASE. For example, Figure 6A 
depicts a case where the ADAM15 gene displays ASE in 
breast cancer patient 3 (TCGA-BH-A0DT). The ADAM15 
protein is known to display tumor suppressive activities 
when it is released as an exosomal component [41], and 
abnormal expression and dysregulation of alternative 
splicing in ADAM15 has been previously associated with 
breast cancer [42]. Previous studies have also shown that 
four ADAM15 isoforms varying by the sequence of the 
cytoplasmic domains, display variable effects in vitro. The 
shortest isoform, ADAM-15D, arises due to loss of exons 
19 to 21 causing a reading frame shift in exons 22 and 23 
when compared with the other three isoforms. The variant 
lacks proline-rich modules and has a distinct sequence of 

Figure 5: Mechanisms of ASE. Potential underlying mechanisms for ASE were explored as outlined in the Materials and Methods. 
Pie chart depicts amount of ASE that could be attributed to (A) tumor heterogeneity and copy number variation (CNV, darker blue) (B) 
cis-eQTLs, (C) DNA methylation and (D) exon-skipping via computational analysis.
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37 amino acids. As shown in Figure 6B, we observe an 
increase in antisense RNA mapping to acceptor (1.7×) 
and donor (1.8×) sites in this patient’s tumor. We have 
identified an exon-skipping event (exon 19), consistent 
with the ADAM-15D isoform. The increase in antisense 
RNA correlates with this isoform’s expression, which is 
substantially higher (3.8×) in the patient’s tumor sample 
when compared to normal and could explain ASE at this 
locus (Figure 6C).

Another example is illustrated in Supplementary 
Figure 9A, where the Lysyl Oxidase Like 2 (LOXL2) 
gene displays ASE at the rs1051146 locus in breast cancer 
patient 1 (TCGA-BH-A0B3), which overlaps with an 
exon-skipping event. LOXL2 has accumulated numerous 
reports that document its role in cancer formation and 
proliferation of breast cancer [43, 44]. Further, research 
has shown that a short isoform of LOXL2 missing exon 
13 can regulate cancer cell migration and invasion through 
a dissimilar mechanism compared to its canonical form 
[45]. Here, we observe more antisense RNA mapping to 
acceptor (8.7×) and donor (9.2×) sites (Supplementary 
Figure 9B) and increased skipping of exon 6 (9.9×) 
(Supplementary Figure 9C) in breast cancer patient 1’s 
tumor sample, both correlated with an increase in ASE.

Tenascin C (TNC) is a gene belonging to a family of 
extracellular matrix (ECM) glycoproteins that is known 
to be overexpressed in cancer cells. Studies have shown 
that remodeling of ECM in cancer can affect cellular 
interaction as ECM influences behavior of the cells [46, 
47]. One specific study has shown that a TNC isoform 
containing exons 14 and 16 but not 15 is upregulated 
in breast cancer, which leads to increased cell invasion 
and proliferation [48]. In breast cancer patient 3, TNC 
displays changes in ASE at rs17819466 inside exon 15 
(Supplementary Figure 10A). Antisense RNA mapping to 
acceptor (2.1×) and donor (2.6×) sites are elevated in the 
tumor sample (Supplementary Figure 10B), as are split-
reads spanning exons 14 and 16 (5.5×) (Supplementary 
Figure 10B).

Collectively, these results suggest that antisense 
RNA mediated alternative splicing may be a significant 
factor in accounting for our observed changes in ASE 
between normal and cancer samples.

DISCUSSION

Cancer is a complex disease not only from the 
perspective of the number and diversity of genes 
involved but also because of the existence of extensive 
regulatory variation controlling the expression of these 
genes. One manifestation of these regulatory controls 
is allele-specific expression (ASE) at specific cancer 
driver gene loci [7]. If cancer driver mutations can be 
transcriptionally repressed/de-repressed in an allele-
specific manner, they may be segregating at higher than 
expected frequencies in populations of normal healthy 
individuals. In an initial effort to explore this possibility, 
we conducted a computational analysis of functionally 
significant cancer driver mutations in a sampling of 
normal healthy human populations across the world (2.5 
thousand genomes comprising the 1000 Genome Project 
(1KGP) [49]). While relatively few confirmed dominant 
oncogene mutations were found to be segregating in 
these populations, 93% of healthy individuals sampled 
were found to carry functionally significant loss-of-
function (LOF) cancer driver mutations at one or more 
tumor suppressor gene loci (21% of individuals carry 1 
mutant allele; 28% carry 2, 24% carry 3, 13% carry 4, 
5% carry 5, 2% carry >6). This encompassed 448 LOF 
mutations (averaging 3.2 LOF mutations per TSG), 420 
of which are computationally predicted to be deleterious 
without experimental validation. In contrast, we found 
that the frequency of such LOF mutations is higher in 
random samplings of non-TSGs (Supplementary Table 
4) as well as in TSGs from normal tissues in TCGA 
patients (Supplementary Table 5) consistent with the idea 
of negative selection against LOF somatic mutations that 
affect TSGs.

Table 3: ASE SNPs with differentially expressed exon-skipping events and enrichment of antisense RNA

ASE 
Pattern

Total ASE 
SNPs

ASE SNPs w/ 1.5× 
ISO1a

Percentage of ASE 
correlated

ASE SNPs w/ 1.5× 
ISO1 and 1.5× ASb

Percentage of ISO1 
correlated  

w/ antisense
1 591 278 47.0 191 32.3
2 13 5 38.5 1 7.7
3 4 4 100.0 4 100.0
4 500 217 43.4 155 31.0
5 59 18 30.5 7 11.9
6 71 51 71.8 51 71.8
Total 1238 573 46.3 409 33.0

aReads supporting ISO1 (isoform 1 genelet) are split-reads spanning the two flanking exons adjacent to the skipped exon 
bRNA reads with predicted antisense orientation.
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While the frequencies of LOF TSGs we detected are 
higher than what has been typically reported for specific 
TSGs [50, 51], they are not unprecedented. For example, 
among the most intensively studied TSGs is the RB1 gene 
that is associated with inherited childhood retinoblastoma 
[18]. Although the frequency of individuals heterozygous 
for LOF RB1 alleles (“carriers”) in human populations is 
generally reported to be ≤ 5% [51], considerable variability 
exists among ethnic groups/populations. For example, in a 
study of select Asian populations, the frequency of carriers 
of LOF RB1 alleles was reported to be as high as 34% in 
specific ethnic populations [52].

The “two-hit” hypothesis proposes that individuals 
heterozygous for a LOF tumor suppressor allele will not 
typically develop cancer unless an additional LOF mutation 
occurs in the gene’s functional partner allele [18]. While 
the two-hit hypothesis has been successfully employed 
to account for many instances of inherited cancers 
associated with tumor suppressor genes [53, 54], a number 
of examples have been identified in recent years that are 
inconsistent with Knudson’s “two-hit” hypothesis [55–57]. 
For example, it is now known that not all children afflicted 
with retinoblastoma are homozygous for the LOF RB1 
allele [58, 59] and this condition has, in several cases, been 

Figure 6: ADAM15 exon skipping correlates with ASE in a breast adenocarcinoma patient. (A) An exon-skipping event 
in exon 19 of ADAM15 in a breast cancer patient (TCGA-BH-A0DT). (B) Antisense reads ( ) mapping to donor and acceptor 
sites are quantified, alongside the ASE locus within the exon (N = normal; T = tumor; AS = antisense RNA). (C) Quantification of reads 
supporting the isoform missing exon 19. Relative expression plots are shown for antisense RNA, ASE and isoforms below.
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associated with aberrant expression of unlinked regulatory 
genes [60]. While evaluating the “two-hit” model in our 
dataset, we found that < 20% of patients acquired a second 
LOF mutation in cancer tissues as predicted by the “two-
hit” model. This finding is consistent with a growing 
body of evidence that the mechanisms underlying the 
contribution of TSGs to cancer onset and progression are 
often more complex than originally envisioned [61, 62].

A primary goal of our study was to evaluate 
the potential significance of changes in ASE of TSGs 
between normal and cancer, and to explore the molecular 
mechanisms that may underly this process. While 
searching the TCGA database for evidence of ASE we 
found that COSMIC census mutations in TSGs display 
significantly (P < 3.11 × 10−10) more ASE in tumors 
compared to matched normal tissues in breast, head and 
neck, and lung cancers. Our finding that this change is 
not limited to COSMIC genes but extends to genes not 
previously associated with cancer, implies a general loss 
of regulatory control in cancer. Evidence for such a global 
loss in regulatory control in cancer has been previously 
reported [63, 64]. This difference in ASE between tumors 
and matched normal tissues was substantially less and not 
significant within TSGs in thyroid carcinoma. Further 
research will be required to unequivocally determine the 
basis for this discrepancy. However, one possibility is that 
thyroid cancer’s inherently low mutation rate [19] allows 
for its transcriptional regulation to remain more intact.

Of the six possible Patterns of change in ASE 
between normal and cancer tissues, we found that Pattern 
1 (i. e., no ASE in normal tissue but expression of mutant 
allele (alt) > expression of wild-type (ref) allele in cancer 
tissue) was one of the most commonly observed Patterns 
across cancer types. This finding is consistent with the 
hypothesis that LOF TSG alleles may be contributing 
significantly to cancer onset/progression even in the 
heterozygous state.

One possible explanation of the observed changes in 
ASE patterns between normal and cancer tissue is that it 
is structural in nature, i. e., the consequence of differences 
in allele counts attributable to, for example, loss of 
heterozygosity (LOH) or the polyclonal heterogeneity 
characteristic of most tumors [25]. To test this possibility, 
we compared RNA allele counts with DNA allele 
counts in the same patient samples. We found that on 
average, 35% of genes displaying ASE had DNA allele 
counts that correlated with RNA allele counts. These 
results are consistent with prior findings indicating that 
a significant fraction of ASE can be accounted for by 
underlying differences in DNA allelic content [25]. It 
should be noted that structural changes introduced by 
somatic mutations that create premature termination 
codons and/or induce nonsense-mediated RNA decay 
could also be a contributing factor [65]. Nevertheless, 
collectively our results indicate that, at least with respect 
to our patient samples, differences in ASE between normal 

and cancer tissues is not merely structurally based but 
likely attributable to allele-specific differences in gene 
expression.

Another mechanism of regulatory change of 
emerging significance in cancer is epigenetics (83). In 
a preliminary effort to explore the possible contribution 
of epigenetics to global changes in patterns of ASE, we 
analyzed methylation data for patient samples from 
TCGA. We found that only 10% of genes displaying 
ASE also displayed significant differences (>1.3-fold) in 
methylation between the normal and tumor tissue samples. 
Because changes in methylation are generally considered 
to be a reliable indicator of epigenetic-associated changes 
in gene expression [66], our results suggest that changes 
in methylation may not be playing a predominant role in 
the regulation of ASE in our patient samples.

Allele-specific differences in gene expression may 
also be attributable to variant cis-regulatory sequences 
located up- or down-stream from the respective alleles’ 
coding regions. Such cis-regulatory variation is 
commonplace and is often identified by utilizing QTL 
mapping methodologies [67]. We employed the Genotype-
Tissue Expression Project’s (GTEx) single tissue cis-eQTL 
database to explore the extent to which allele-specific 
cis-regulatory variation may account for ASE in patient 
samples. We found that only 24% of genes displaying 
ASE are eGenes, more of which explain ASE in normal 
(38%) than tumor (21.8%) samples. Moreover, only 
1.8% of ASE haplotypes were found to be in phase with 
an eQTL indicating that cis-regulatory variation is not a 
likely explanation of the majority of instances of ASE in 
our dataset.

Having failed to identify a mechanism of 
transcriptional level regulation that could explain the 
majority of observed instances of ASE in our dataset, we 
turned our attention to the potential influence of post-
transcriptional regulation on ASE. One post-transcriptional 
mechanism of growing prominence in cancer biology 
is alternative splicing [68]. The primary RNA products 
of genes are processed at the post-transcriptional level 
by alternative RNA splicing resulting in multiple RNA 
isoforms per gene. If alternate RNA isoforms are generated 
on an allele-specific basis (allele-specific alternative 
splicing), it could manifest itself as differences in ASE. 
To explore the possibility that allele-specific alternative 
splicing could be contributing to changing patterns of ASE 
in cancer, we examined isoform counts associated with 
our TCGA patient data [37]. We found that almost half 
(46%) of SNPs displaying ASE in patient samples were 
indeed associated with exon skipping. However, further 
studies that employ a more granular isoform-specific 
quantification around ASE loci will be needed to fully 
understand the workings of an allele-specific alternative 
splicing mechanism.

While the potential functional significance of 
alternative splicing in cancer has been long noted [69], the 
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mechanisms underlying the phenomenon remain poorly 
understood. Because the genes displaying changes in ASE 
are not associated with cis-regulatory mutations in splice 
acceptor/donor sites, we focused our attention on possible 
trans-regulatory mechanisms. One possibility is that one 
or more of the regulatory proteins or RNAs associated 
with the spliceosome could be mutated or otherwise 
dysregulated in cancer resulting in aberrant splicing 
patterns [70]. However, the fact that our observed allele-
specific alternative splicing was limited to only a subset of 
genes suggested that the underlying mechanism was of a 
more targeted nature.

One possibility was suggested from previous studies 
showing that splicing events can be experimentally induced 
in vivo by exposing primary transcripts to antisense RNAs 
that pair with known splice sites in the primary transcript 
[71, 72]. Indeed, there is growing evidence that de novo 
expression of antisense RNAs may play a significant 
role in the induction of alternate-splice variants [73] 
and that this may be a significant factor in cancer onset/
progression. Our results are generally consistent with 
this hypothesis and suggest that allele-specific alternative 
splicing, possibly mediated by changes in the expression 
of antisense RNAs, may play a significant role in the 
induction of changes in ASE patterns in cancer. Further 
studies inducing ASE in vitro via use of antisense 
oligonucleotides will be needed to validate this hypothesis.

MATERIALS AND METHODS

Cancer associated mutation identification in 
1000 genomes population

Using the BEDTools program [74], the genomic 
locations of all coding mutations in COSMIC census genes 
(v82) [75] were intersected with a VCF file containing all 
sequence variants called from the 2,504 individuals of 
the Phase 3 release of the 1000 Genomes Project (1KGP) 
[49]. The distribution of these cancer associated mutations 
was determined for all intersecting mutations including 
the subset of deleterious mutations. Variant effects were 
annotated using Variant Effect Predictor (VEP) using 
the Ensembl 91 release [76]. Mutations were considered 
to be deleterious if they were non-sense, frameshift, 
splice acceptor/donor mutations, or whole gene deletion 
mutations. Missense mutations predicted deleterious 
by both SIFT [15] and Polyphen2 [16] were also scored 
as deleterious mutations. Moreover, we removed any 
mutation that had been labeled as benign or likely benign 
by ClinVar [77].

Genotyping and variant calling with WXS and 
variant annotation

Genotyping was implemented from WXS. 
SAMtools mpileup output was fed to VarScan’s 

mpileup2snp function in order to call variants [78]. Only 
reads with mapping quality > 14 were counted. Further, to 
call a variant, a position must have met a minimum read 
depth of 8, minimum allelic depth of 2 and variant allele 
frequency threshold of 0.2. The default p-value of 0.01 
was used for calling variants. Variants were annotated 
using VEP with the same criteria mentioned as above.

Allele specific expression (ASE) analysis

Counting allele-specific reads

Indexed RNA-Seq BAM files along with 
filtered heterozygous variants were passed to GATK’s 
ASEReadCounter tool [79]. At this step, only reads with 
minimum mapping quality and base quality scores of 20 
and 30, respectively, were counted. Also, minimum depths 
of 20 reads per site and four reads per allele were applied. 
With the aim of inferring biological significance, resulting 
allele counts were annotated with rsid using Kaviar. 
Subsequently, gene names associated with particular 
SNPs were fetched from dbSNP using EDirect [80]. The 
fraction of reads containing the reference allele over the 
total number of reads at a given position (Ref Ratio) was 
calculated for all heterozygous SNPs. Custom scripts were 
written to perform allele specific expression analysis.

Accounting for mapping bias

When mapping RNA-seq reads to the reference 
genome, reads overlapping a SNP that contain the 
alternative allele tend to map less frequently than those 
reads containing the reference allele. This allelic mapping 
bias has been well documented and presents challenges 
in ASE analysis [81]. Degner et al. demonstrated that 
the reliability in ASE estimation is greatly dependent 
on the capability to control for reference mapping bias 
[82]. To limit this bias, we first removed sites known to 
be susceptible to mapping bias. We did so by removing 
all sites with 50bp mapability < 1 based on the UCSC 
mapability track [83]. To correct for any residual bias, we 
calculated the genome-wide allelic ratios for all nucleotide 
pairs and used them in place of 0.5 as the expected allelic 
ratio in the binomial test (Supplementary Figure 11) as 
previously done by Lappalainen et al [84].

ASE-analysis

Using the allele counts for every heterozygous 
position that met our filtering requirements, we performed 
a binomial test to identify whether the ratio of reference 
and alternative read counts differed significantly from the 
corresponding expected proportion between those alleles. 
Expected ratios were inflated slightly from 0.5 based 
on the observed allele counts within our population as 
described in the previous section. We classified a site as 
an ASE SNP if its binomial p-value was less than 0.005 
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and corrected for a false discovery rate (FDR) of 5%. 
Gene level ASE was determined by aggregating ASE 
information from all heterozygous SNPs within a gene 
as outlined by the MBASED protocol [8]; ASE genes 
were classified with a major allele frequency (MAF) 
greater than 0.7 and p-value less than 0.05 (FDR 5%). 
To label significant ASE genes with Patterns we pseudo-
phased them by creating a major haplotype consisting of 
the alleles with higher RNA read counts. If a haplotype 
contained more reference SNPs it was labelled as the 
reference haplotype and vice versa for the alternative. 
If the number of reference and alternative SNPs on each 
haplotype were the same, the haplotype was labelled as 
ambiguous.

Differences in ASE between normal and cancer tissue 
groups, were evaluated by comparing the distributions of 
the proportion of SNPs with ASE within each collection. 
The statistical significance levels of the observed difference 
in ASE between normal and tumor tissues for both 
COSMIC census mutations and all heterozygous SNPs 
were evaluated by comparing these distributions using the 
non-parametric Mann-Whitney U test.

When comparing SNPs intersecting paired normal 
and tumor samples, we applied a combined binomial-
Fisher test to determine if ASE patterns were significant. 
Three ASE patterns of interest were analyzed; Pattern 
1: No significant difference in ASE (ref=alt) in normal 
tissues but significant ASE (ref<alt) in cancer tissues; 
Pattern 2: Significant ASE in normal tissues (ref>alt) but 
no significant ASE (ref=alt) in cancer tissues; Pattern 3: 
Significant ASE in normal sample (ref>alt) and significant 
ASE in tumor sample (ref<alt); Pattern 4: No significant 
ASE in normal tissues (ref=alt) but significant ASE 
in cancer tissues (ref>alt); Pattern 5: Significant ASE 
(ref<alt) in normal tissues but no significant ASE in cancer 
tissues (ref=alt); Pattern 6: Significant ASE in normal 
(ref<alt) and in cancer tissues (ref>alt). All Patterns are 
visualized in Figure 3A. Significant ASE (FDR = 5%, 
P < 0.005) was determined using a binomial test within 
samples and subsequently a Fisher’s exact test (P < 0.05) 
when comparing two samples. Both tests were applied to 
increase stringency and validity of results.

The analyses used to determine mechanisms of ASE 
are outlined in detail in the Supplementary File: Materials 
and Methods.

Second site loss-of-function mutations

Filtered heterozygous sites in tumor suppressor 
genes (TSGs) of all 233 patients in normal and tumor 
samples were phased using SHAPEIT [85]. Loss-
of-function mutations were defined as stop gained, 
frameshift, splice acceptor/donor, start lost and stop lost 
mutations. Deleterious missense mutations predicted to be 
damaging/deleterious by SIFT [15] and Polyphen2 [16] 
were also considered loss of function in TSGs. Patients 

with a secondary site loss-of-function mutation were 
defined as having a heterozygous mutation in the normal 
sample and either: 1) the same mutation homozygous in 
the tumor sample, 2) a new loss of function mutation on 
the opposite allele in the tumor sample (i. e. compound 
heterozygote), or 3) a DNA segment with loss of allele at 
the locus in the tumor sample. Segments of DNA with loss 
of allele were identified using FACETS [86].

Detailed materials and methods are included in the 
Supplementary File.

CONCLUSIONS

We have shown that LOF TSGs are segregating in 
human populations at significant frequencies suggesting 
that many otherwise healthy individuals are at elevated 
risk of developing cancer. Changes in ASE between 
normal and cancer tissues indicates that LOF TSG alleles 
may contribute to cancer onset/progression even when 
heterozygous with wild-type functional alleles. While 
a variety of molecular mechanisms were identified as 
potentially contributing to changes in ASE between normal 
and cancer, differences in DNA counts and allele-specific 
alternative splicing emerged as predominant factors.
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