
royalsocietypublishing.org/journal/rstb
Research
Cite this article: Clayton EA, Rishishwar L,
Huang T-C, Gulati S, Ban D, McDonald JF,

Jordan IK. 2020 An atlas of transposable

element-derived alternative splicing in cancer.

Phil. Trans. R. Soc. B 375: 20190342.
http://dx.doi.org/10.1098/rstb.2019.0342

Accepted: 6 November 2019

One contribution of 15 to a discussion meeting

issue ‘Crossroads between transposons and

gene regulation’.

Subject Areas:
bioinformatics, computational biology,

genetics, genomics, health and disease and

epidemiology

Keywords:
transposable elements, alternative splicing,

cancer, tumorigenesis, gene expression,

gene regulation

Author for correspondence:
I. King Jordan

e-mail: king.jordan@biology.gatech.edu
© 2020 The Author(s) Published by the Royal Society. All rights reserved.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.4794744.
An atlas of transposable element-derived
alternative splicing in cancer

Evan A. Clayton1, Lavanya Rishishwar2,3,4, Tzu-Chuan Huang2,
Saurabh Gulati2, Dongjo Ban1, John F. McDonald1 and I. King Jordan2,3,4

1Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology,
Atlanta, GA, USA
2School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
3PanAmerican Bioinformatics Institute, Cali, Colombia
4Applied Bioinformatics Laboratory, Atlanta, GA, USA

IKJ, 0000-0003-4996-2203

Transposable element (TE)-derived sequences comprise more than half of
the human genome, and their presence has been documented to alter gene
expression in a number of different ways, including the generation of alter-
natively spliced transcript isoforms. Alternative splicing has been associated
with tumorigenesis for a number of different cancers. The objective of this
study was to broadly characterize the role of human TEs in generating alter-
natively spliced transcript isoforms in cancer. To do so, we screened for the
presence of TE-derived sequences co-located with alternative splice sites that
are differentially used in normal versus cancer tissues. We analysed a com-
prehensive set of alternative splice variants characterized for 614 matched
normal-tumour tissue pairs across 13 cancer types, resulting in the discovery
of 4820 TE-generated alternative splice events distributed among 723 cancer-
associated genes. Short interspersed nuclear elements (Alu) and long inter-
spersed nuclear elements (L1) were found to contribute the majority of
TE-generated alternative splice sites in cancer genes. A number of cancer-
associated genes, including MYH11, WHSC1 and CANT1, were shown to
have overexpressed TE-derived isoforms across a range of cancer types.
TE-derived isoforms were also linked to cancer-specific fusion transcripts,
suggesting a novel mechanism for the generation of transcriptome diversity
via trans-splicing mediated by dispersed TE repeats.

This article is part of a discussion meeting issue ‘Crossroads between
transposons and gene regulation’.
1. Background
Half or more of the human genome is derived from transposable element (TE)
sequences, remnants of formerly mobile genetic elements that can replicate to
extremely high copy numbers over time [1,2]. TE sequences contribute to
human gene regulation through a variety of distinct mechanisms [3–6]. Previous
work from our own laboratory has documented the presence of TE-derived tran-
scription factor binding sites [7–10], enhancers [11–15], chromatin insulators [16],
microRNAs [17,18] and antisense RNAs [19] along with TE-derived alternative
transcription initiation [20–22] and termination sites [23].

The provisioning of alternative splice sites is anotherway that TEs can contrib-
ute to the complexity of the human transcriptome [24–26]. A role for TEs in
alternative splicing of human genes was discovered via classic studies on Alu
elements in the early 2000s. Investigators from the laboratories of Gil Ast and
DanGraur uncovered evidence of Alu-derived splice sites, aswell as the inclusion
of Alu elements in alternatively spliced exons, for a number of human genes
[27,28]. These studies suggested a potential role for TE-derived alternative
splicing in disease, cancer in particular [29]. Nevertheless, compelling proof for
such a connection has remained elusive.

The role of TEs in cancer has received substantial attention as of late [30–35],
and alternative splicing has itself been widely associated with tumorigenesis
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[36–43]. As such, it seems reasonable to hypothesize that
TE-derived alternative splicing could play an important
role in cancer. Despite the seemingly obvious connections—
among TEs, alternative splicing, and cancer—there has yet to
be any systematic analysis on the contribution of TEs to alterna-
tive splicing events in tumour tissue. The goals of this study
were to (i) survey the global landscape of TE-derived alterna-
tive splicing across a variety of cancer types, and (ii) identify
individual cases where TE-derived splice sites are linked to
splicing (isoform) alterations in cancer.

We analysed 614 matched normal-tumour samples pairs
for 13 cancer types, characterized as part of The Cancer
Genome Atlas (TCGA). Integrated analysis of RNA-seq
data and genome annotations were used to generate a
genome-wide atlas of TE-derived alternative splice sites, and
differential expression analysis of alternative splice variants
was used to identify ‘isoform switch’ events, with TE-
derived splice isoforms that show increased use in cancer
samples. Our atlas of TE-derived alternative splice variants is
made available to the research community via the UCSC
Genome Browser. We go on to propose a potentially novel
mechanism, whereby the dispersed repetitive nature of TE
sequences facilitates the generation of fusion transcripts via
trans-splicing events. Our TE trans-splicing mechanism is
admittedly speculative at this time, and we suggest the kinds
of tests that will need to be done to further interrogate
our model.
2. Methods
A schematic overview of the bioinformatics analysis pipeline
used for this study can be seen in figure 1. A list of all data
sources, programs and statistical methods used in the study
can be seen in the electronic supplementary material, table S1.

(a) Genomic data
All analyses are based on the human genome reference sequence
build hg19 (GRCh37). Genomic coordinates for NCBI RefSeq [44]
and Ensembl transcript models, i.e. exon/intron boundaries,
were taken from the UCSC Genome Browser [45]. Genomic coor-
dinates for TE sequences were taken from RepeatMasker
annotations [46]. Overlap analysis of gene, TE and alternative
splice event coordinates were performed using the BEDTOOLS

program [47].

(b) Alternative splicing
The Catalogue Of Somatic Mutations In Cancer (COSMIC)
Cancer Gene Census was used to identify cancer-associated
genes—oncogenes, tumour suppressor genes and fusion genes—
for subsequent alternative splicing analysis [48]. Transcriptome
(RNA-seq) data for matched normal-tumour sample pairs of indi-
vidual patients, across a variety of distinct cancer types, were taken
from TCGA for alternative splice site analysis (electronic sup-
plementary material, figure S1). RNA-seq data were mapped to
the human reference genome sequence and processed using the
program SPLADDER, as previously described in [39], in order
to characterize alternative splice events in cancer-associated
genes. Four kinds of alternative splice events were analysed here:
(i) intron retention, (ii) exon skipping, (iii) alternate 30 splicing
and (iv) alternate 50 splicing (electronic supplementary material,
figure S2). For all observed alternative splice events, two distinct
isoforms were defined and quantified. Isoform 1 and isoform 2
are operationally defined as the shorter and longer isoforms,
respectively. Thus, isoform 1 corresponds to the TE-derived
isoform for exon skipping, whereas isoform 2 corresponds to the
TE-derived isoform for intron retention, alternate 30 splicing, and
alternate 50 splicing. The expected numbers of TE-derived isoforms
for cancer-associated genes were calculated based on the total
number TEs from each TE class within cancer genes:

no: of TE element (SINE, LINE, or etc)
no: of all elements

�(no: of all observed TE for an event):

Genomic coordinates for individual alternative splice sites
and their corresponding isoforms are defined by the presence of
overlapping RNA-seq reads for at least three individuals. Individ-
ual alternative splice events were characterized across all COSMIC
genes, and each individual event was quantified as the number of
reads mapping to the alternatively spliced exon. This was done for
all genes from individual samples corresponding to each cancer
type and its corresponding matched normal-tumour sample
pair. Overlapping alternative splice event isoforms were clustered
using single linkage clustering based on greater than or equal to
75% overlap of splice site genomic coordinates, and cluster coordi-
nates were defined as the minimum and maximum start and stop
sites for the individual constituent splice sites. Alternative splice
site cluster counts for all isoforms were calculated as the average
counts across all individual constituent splice sites within any
given tissue type.

(c) Differential expression (splicing)
The program DESEQ2 was used to normalize tissue-specific
alternative splice site cluster counts using the variance stabilizing
transformation technique [49]. Differential alternative splice iso-
form expression, between matched normal-tumour sample pairs,
was measured using relative expression change (REC) and via a
2 × 2 contingency table with the G-test. For each alternative splice
event, cluster average count values were computed across four
conditions: (i) non-TE isoform normal, (ii) TE isoform normal,
(iii) non-TE isoform tumour and (iv) TE isoform tumour. The
REC value for individual alternative splice events are calculated
as the normalized difference of the TE isoform in tumour versus
normal tissue:

REC ¼ ETE isoform
tumour

Enon�TE isoform
tumour þ ETE isoform

tumour

� �

� ETE isoform
normal

Enon�TE isoform
normal þ ETE isoform

normal

 !
,

where, ETE isoform
normal is the average normalized cluster count for the

TE-derived isoform across all individuals in normal tissue. The
statistical significance of normal-tumour differential expression
(splicing), i.e. differences in average alternative splice site cluster
counts, was evaluated using a 2 × 2 contingency table with
the G-test:
normal
 tumour
isoform 1
 Enon�TE isoform
normal
 Enon�TE isoform

tumour
 n1

isoform 2
 ETE isoformnormal
 ETE isoformtumour
 n2
nN
 nT
 N
(d) Visualization
Individual cases TE-derived and differentially expressed alterna-
tive splice sites of interest were visualized using the UCSC
Genome Browser. Locations of RNA-seq characterized alterna-
tive splice site clusters were compared to the locations of TE
sequences and COSMIC gene exon/intron boundaries. Genomic
coordinates of the TE-derived alternatively spliced exons
characterized here are distributed as a UCSC Genome Brower
Track hub.
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Figure 1. Bioinformatics analysis pipeline used for this study. RNA-seq datasets from 658 paired normal-tumour TCGA samples from 22 cancer types were analysed
in this study. The schematic can be broadly divided into four stages: (row 1) detection of alternative splicing events and per-exon expression quantification,
(row 2) identification of TE-derived alternative splicing events for cancer-associated genes, (row 3) statistical testing for differences in alternative splicing expression
levels between matched normal and tumour tissues, and (row 4) evaluation of cases of interest to explore the potential functional impact of TE-derived alternative
splicing on cancer.
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3. Results and discussion
(a) Transposable element-derived alternative splice sites

and cancer
We analysed RNA-seq data for matched normal-tumour
sample pairs from individual patients in order to characterize
the genomic landscape of alternative splicing in cancer.
A total of 678 patient samples among 22 different cancer
types were considered for preliminary analysis; cancer
types with less than 10 patient samples were subsequently
excluded, yielding a final dataset of 614 patients across 13
cancer types (table 1; electronic supplementary material,
figure S1). We relied on a recently published approach to
the characterization of alternative splicing in cancer, which
has been shown to yield reliable results in terms of both
characterizing and quantifying individual alternative splice
sites and their corresponding isoforms [39]. We focused
on four distinct types of alternative splicing events un-
covered by the previous approach—(i) intron retention,
(ii) exon skipping, (iii) alterative 30 splicing and (iv) alterative
50 splicing (electronic supplementary material, figure S2)—
and modified the existing method to yield tissue-specific
counts of alternative splice site isoforms for individual
patients (see Methods).

We then narrowed our analysis to a catalogue of 723 known
cancer-associated genes and focused on the alternative splice
sites in cancer genes that are derived from TE sequences. TE-
derived splice sites were delineated by searching for canonical
splice donor and acceptor site sequence motifs, located at 30

and 50 exon boundaries, that overlap with annotated TE
sequences (electronic supplementary material, figure S3).
Human TE sequences were divided into their four major
classes – short interspersed nuclear elements (SINEs), long
interspersed nuclear elements (LINEs), long terminal repeat
elements (LTR) and DNA elements (DNA) (electronic sup-
plementary material, figure S4)—and the overall extent of
their contribution to alternative splicing in cancer was evalu-
ated. TE sequences contribute 4820 distinct alternative splice
sites genome-wide, ranging from 10.5% of alternative 50

splice events to 14.0% of exon skipping events (electronic
supplementary material, figure S5). TEs also contribute a
substantial minority of the alternative splice sites to cancer-
associated genes. Across the 13 cancer types, TE-derived
isoforms are a consistent minority, and the numbers of alterna-
tive splice sites are more similar for TE- versus non-TE-derived



Table 1. TCGA patient samples analysed in this study.

cancer type TCGA abbreviations number of samples number of participants

breast invasive carcinoma BRCA 220 110

kidney renal clear cell carcinoma KIRC 144 72

thyroid carcinoma THCA 116 58

lung adenocarcinoma LUAD 114 57

prostate adenocarcinoma PRAD 104 52

liver hepatocellular carcinoma LIHC 100 50

lung squamous cell carcinoma LUSC 98 49

head and neck squamous cell carcinoma HNSC 84 42

kidney renal papillary cell carcinoma KIRP 62 31

stomach adenocarcinoma STAD 54 27

colon adenocarcinoma COAD 48 24

kidney chromophobe KICH 46 23

bladder urothelial carcinoma BLCA 38 19
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isoforms, compared to the relatively small differences seen for
normal versus cancer samples (figure 2a).

At first glance, the overall landscape of TE-derived splicing
isoforms in cancer-associated genes suggests the possibility
that TE contributions to alternative splicing in cancer may
not be very biologically significant. However, when alternative
splicing events in cancer-associated genes are broken down by
event type and TE class, the potential contribution of TEs
becomes more apparent. This is because for any given splice
sitewhere a TE is present, the numbers of TE-derived splice iso-
forms tend to outnumber the non-TE-derived isoforms that do
not showa splice site at the same TE (figure 2b). This holds true
for three out of the four alternative splice event types; for intron
retention, the non-TE-derived isoforms are more common.
Finally, it is interesting to note that there is no particular enrich-
ment for the contributions of any given TE class to any of the
four kinds of alternative splice site events. The observed num-
bers of TEs from each class that contribute to these events are
very similar to the expected numbers based on their back-
ground frequencies within cancer-associated genes (figure 2c).

(b) Differential expression of transposable element-
derived splice sites

We analysed differences in the expression levels of alternative
splice sites between matched normal-tumour sample pairs in
an effort to evaluate the effects of individual TE-derived
splice sites on cancer. The expression levels of individual altera-
tive splice sites, and their corresponding isoforms, were
quantified via normalized counts of mapped RNA-seq reads
as detailed in the Methods section. For any given TE-derived
splice site, there are four possible expression counts for an indi-
vidual patient: (i) non-TE isoform normal, (ii) TE isoform
normal, (iii) non-TE isoform tumour and (iv) TE isoform
tumour. Expression counts for these four conditions can be
averaged across individuals to measure the REC of TE-derived
isoforms in tumour compared to normal tissue and to evaluate
the significance of this difference (electronic supplementary
material, figure S6). Distributions of REC values for the four
types of TE-derived splice sites across the 13 cancer types are
shown in figure 3. For the most part, these distributions are
tightly clustered around the median value of 0, or no relative
change, with sparsely populated tails that contain individual
cases of potential interest.We evaluated a number of the outlier
genes showing highly differentially expressed alternative
splice isoforms between matched normal-cancer samples
(table 2), in an effort to explore potential functional
implications of TE-derived splice sites in cancer.

(c) Potential functional implications of transposable
element-derived splice sites in cancer

One particular result that stood out from this analysis was the
observation that a few cancer-associated genes have extre-
mely high counts of TE-derived alternative splicing events.
The kallikrein-related peptidase 2 encoding gene KLK2
shows more than twice as many TE-derived alternative
splice sites compared to the second rank gene on this list
(figure 4a). There are a total of 297 TE-derived isoforms ident-
ified for this gene compared to 354 non-TE-derived isoforms.
The KLK2 protein is primarily expressed in the prostate and
has been shown to promote prostate cancer cell growth [50].
The connection between TE-derived alternative splicing and
cancer is supported by the fact that all of the TE-derived
isoforms observed here were identified in prostate adenocar-
cinoma samples. Examples of TE-derived isoforms for KLK2
are shown in figure 4b,c; these alternative splice events are
predicted to induce frameshifts that would lead to truncated
protein sequences. Alternative splicing of KLK2 results in
fusions with the ETV1 and ETV4 genes in prostate cancer,
and all of the known fusion transcripts for these genes are
missing exon 3 of KLK2 [51,52]. Interestingly, exon skipping
events are by far the most abundant TE-derived splice iso-
forms seen for this gene (figure 4). The large number of
putative TE-derived alternative splicing events in KLK2,
specifically exon skipping, suggests TEs could play an impor-
tant role in the manifestation of KLK2 fusion transcripts and
their contribution to prostate cancer. Given their dispersed
repetitive nature, it is possible that TE sequences serve as hot-
spots for the generation of fusion transcripts in cancer.
We further explore this potential model for transcriptome
diversification by TE sequences in the Conclusion.
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Figure 2. Overall landscape of TE-derived alternative splicing in cancer. (a) Dot-and-whisker plot comparing the distributions of TE and non-TE isoforms in cancer-
associated genes in normal (blue and light blue) and tumour (red and light-red) tissues across all samples within each cancer type. The median number of events
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The Myosin Heavy Chain 11 gene MYH11 encodes part
of a hexameric protein that functions as a major contractile
complex, converting chemical energy into mechanical
energy through the hydrolysis of ATP. MYH11 has been
shown to contribute to tumorigenesis in both leukaemia
and non-small cell lung cancer [53]. MYH11 undergoes
alternative splicing, yielding isoforms that are differentially
expressed in tumour samples [54]. MYH11 is also implicated
in cancer-associated gene fusion events; for example, the
CBFB-MYH11 gene fusion plays an important role in
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Table 2. Candidate TE-derived isoform switching in cancer. (Examples are shown for individual TE-derived alternative splice events that are overexpressed in
cancer compared to normal tissue.)

clustera gene cancer type %TEi-Nb %TEi-Tc event type

467 MYH11 lung squamous cell carcinoma 6.5 51.8 Alt3

412 CANT1 stomach adenocarcinoma 67.3 37.4 exon

132 WHSC1 stomach adenocarcinoma 73.1 42.8 exon

412 CANT1 breast invasive carcinoma 53.5 32.1 exon

154 KMT2D stomach adenocarcinoma 21.3 31.8 Alt5

397 POLG stomach adenocarcinoma 34.8 54.6 Alt3

397 POLG bladder urothelial carcinoma 34.8 47.6 Alt3

261 PML kidney renal papillary cell carcinoma 57.2 70.3 intron

261 PML breast invasive carcinoma 47.0 59.6 intron

261 PML kidney chromophobe 65.5 75.8 intron
aCluster ID number corresponding to the distinct TE-derived alternative splicing event.
bRelative expression (percentage of total) for the TE-derived isoform in normal tissue.
cRelative expression (percentage of total) for the TE-derived isoform in tumour tissue.
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leukemogenesis [55–57]. Here, we observe differential iso-
form expression of MYH11 across 49 paired normal-tumour
lung squamous cell carcinoma tissues, whereby an alternative
30 splicing event within a SINE (Alu) yields a longer version
of exon 41 (figure 5; electronic supplementary material, table
S2). The longer SINE-derived isoform makes up 6.5% of the
transcript population in normal samples compared to 51.8%
in tumour samples. The SINE-derived isoform is predicted
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to result in a frameshift mutation and truncation of the
MYH11 protein sequence.

The Wolf-Hirschhorn Syndrome Candidate 1 Protein
encoding gene WHSC1, also known as the Nuclear Receptor
Binding SETDomain Protein 2 gene (NSD2), encodes a histone
methyltransferase that catalyses the dimethylation of histone 3
lysine 36 (H3K36). WHSC1 expression is important for the
epithelial-mesenchymal transition and metastasis in gastric
cancer [58], and it is overexpressed in a number of different
cancer types [59].WHSC1 has been shown to undergo complex
alternative splicing. Most of the primary transcripts ofWHSC1
initiate from exon 3, which contains the canonical translation
initiation site, although a small fraction of transcripts retain
upstream non-coding sequences including exons 1 and 2 [60].
Here, we identified a LINE (L1) element apparently respon-
sible for an exon skipping event in exon 3, which occurs
much more frequently in stomach adenocarcinoma primary
tumour tissues (57%) when compared to matched normal tis-
sues (27%) (figure 6; electronic supplementary material,
table S2). The L1 associated exon skipping event is predicted
to cause a frameshift mutation and truncation of the WHSC1
protein sequence.

The calcium-activatednucleotidase 1 encodinggeneCANT1
is overexpressed in prostate cancer and thought to be involved
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normal and lung squamous cell carcinoma samples. The MYH11 TE-derived isoform values are shown as a red square.
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inproliferation,DNAsynthesis, cell cycle andmigrationofpros-
tate cancer cells [61]. CANT1 is known to undergo alternative
splicing, with three well-defined isoforms. Here, we observe a
novel exon skipping event, which includes both SINE and
LINE elements and results in a differentially expressed isoform,
found at 32.7% in normal samples and 62.6% in stomach
adenocarcinoma tumour samples (electronic supplementary
material, figure S7 and table S2). Interestingly, this particular
TE-derived isoform does not lead to a change in the predicted
protein sequence as exons 2 and 3 correspond to 50 UTR
sequence. Thus, TE-derived alternative splicing of CANT1
may have a regulatory as opposed to structural effect.
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4. Conclusion
Our global survey of TE-derived alternative splicing in cancer
revealed that TE sequences contribute to numerous alterna-
tive splice sites in cancer-associated genes, including cases
where the TE isoforms are relatively overexpressed in
tumour tissue. We hope that the landscape of TE-derived
splice sites uncovered by our study can serve as a resource
for further investigations into the role of TEs in tumorigenesis,
and we have created a database of the TE-derived splice
sites discovered here to facilitate follow-up studies on
TE-derived alternative splicing. The data are distributed as a
‘Track data hub’ [62] on the UCSC Genome Browser
at: http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&hu-
bUrl=http://jordan.biology.gatech.edu/teAs/hub.txt.

http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&hubUrl=http://jordan.biology.gatech.edu/teAs/hub.txt
http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&hubUrl=http://jordan.biology.gatech.edu/teAs/hub.txt
http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&hubUrl=http://jordan.biology.gatech.edu/teAs/hub.txt
http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&hubUrl=http://jordan.biology.gatech.edu/teAs/hub.txt
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The tracks show the genomic locations of the TE-derived
alternative splicing events, with a separate track for each of
the four splicing event types. The tracks can be used for
visual inspection of individual events of interest or for more
large-scale studies via download with the Table Browser.

There are some important caveats to consider with respect
to the overall contributions of TEs to the landscape of alterna-
tive splicing in cancer. For example, it should be noted that the
majority of alternative splice sites in cancer are not TE-derived
(electronic supplementary material, figure S5). Nevertheless,
TE-derived splice sites are not rare events in cancer; TE
sequences provide a substantial minority of alternative splice
sites in cancer: 10.5–14.0% depending on the specific event
type. Another point to consider is that the observed and
expected counts of TE-derived splice isoforms are similar over-
all, suggesting that TEs’ presence alone in gene bodies is
enough to ensure that they will be recruited into splice variant
isoforms (figure 2c). Thus, it is not clear whether there is an
active mechanism by which the use of TE-derived splice sites
is selected for in cancer. Finally, it must be emphasized that
definitive proof for a functional role for TE-derived splice
sites in cancer would require additional molecular biology
work beyond the scope of this study.

One of the more intriguing results uncovered by our study
was the potential connection between TE-derived alternative
splicing and cancer fusion genes. Tumorigenesis is often charac-
terized by large-scale genome rearrangements, and cancer
fusion genes are thought to result from translocations, which
bring genes that are normally far apart in the genome into
close physical proximity.Our results showednumerous alterna-
tively spliced exons that correspond to gene fusion junctions,
particularly for the KLK2 gene that experiences both promiscu-
ous alternative splicing and several gene fusion events, and
these exons have previously been implicated in gene fusion
events. We propose a model whereby apparent gene fusions
actually occur at the transcript level via trans-splicing facilitated
by TE sequences.

Pre-mRNA sequences destined for splicing are bound by
heterogeneous ribonucleoprotein particle (hnRNP) proteins,
which prevent the formation of short secondary structures
caused by base pairing of complementary regions in the
pre-mRNAs. In this way, the bound hnRNPs ensure that pre-
mRNAs remain accessible for the assembly of the spliceosome.
It occurs to us that hnRNPbound pre-mRNAswill also be open
to trans interactionswith pre-mRNAs fromdifferent loci, if they
possess complementary sequences. Trans-splicing is the
phenomenon whereby the splicing machinery joins splice
donor and acceptor sites from different pre-mRNAs that are
co-bound in the same spliceosome, yielding fused mature
mRNAs. We propose that TE dispersed repeats provide comp-
lementary sequences for binding between pre-mRNAs from
different loci, thereby serving as hot spots for trans-splicing.
We envision this mechanism as an RNA level analogue of ecto-
pic recombination between dispersed TE DNA sequences and
a potential driver of transcriptome diversity.

It is important to note that our model of TE-derived trans-
splicing for the generation of fusion transcripts is speculative
and only suggested by our data. A number of additional ana-
lyses would need to be conducted to validate this model.
DNA sequence analysis is needed to distinguish genome
level rearrangements in cancer tissue from transcript fusions.
TE homology (i.e. sequence complementarity) between tran-
script fusion partners, co-located with fusion junctions,
would need to be confirmed. Explicit reconstruction of entire
fusion transcript models, as opposed to individual alternative
splice event analysis as was done here, needs to be performed
to fully characterize observed gene fusions. Finally, it will be
important to avoid RNA-seq experimental artefacts caused
by template switching during the cDNA generation step,
which could be done via single-molecule RNA-sequencing.
Data accessibility. TE-induced alternative splice variant data are distrib-
uted as a Track data hub on the UCSC Genome Browser at: http://
genome.ucsc.edu/cgibin/hgTracks?db=hg19&hubUrl=http://
jordan.biology.gatech.edu/teAs/hub.txt.
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