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ABSTRACT

Biobank projects are generating genomic data for
many thousands of individuals. Computational meth-
ods are needed to handle these massive data sets,
including genetic ancestry (GA) inference tools. Cur-
rent methods for GA inference do not scale to
biobank-size genomic datasets. We present Rye––a
new algorithm for GA inference at biobank scale.
We compared the accuracy and runtime perfor-
mance of Rye to the widely used RFMix, ADMIX-
TURE and iAdmix programs and applied it to a
dataset of 488221 genome-wide variant samples from
the UK Biobank. Rye infers GA based on princi-
pal component analysis of genomic variant samples
from ancestral reference populations and query in-
dividuals. The algorithm’s accuracy is powered by
Metropolis-Hastings optimization and its speed is
provided by non-negative least squares regression.
Rye produces highly accurate GA estimates for three-
way admixed populations––African, European and
Native American––compared to RFMix and ADMIX-
TURE (R2 = 0.998 − 1.00), and shows 50× runtime
improvement compared to ADMIXTURE on the UK
Biobank dataset. Rye analysis of UK Biobank sam-
ples demonstrates how it can be used to infer GA
at both continental and subcontinental levels. We
discuss user consideration and options for the use
of Rye; the program and its documentation are dis-
tributed on the GitHub repository: https://github.
com/healthdisparities/rye.

INTRODUCTION

Genetic ancestry (GA) refers to genetic similarities indi-
cating the geographic origins of common ancestors (1,2).
The GA of modern humans reflects recurrent historical pat-
terns of migration, followed by geographical and reproduc-

tive isolation, and subsequent admixture whereby previ-
ously isolated populations come back together (3–5). GA
is a characteristic of the genome, and it can be inferred
based on correlated allele frequency differences that accu-
mulate owing to the action of evolutionary forces on an-
cestral populations (6). GA can be characterized objec-
tively and with precision, as a categorical or continuous
variable, at the genome-wide or local level, and at differ-
ent levels of scale, e.g. continental versus subcontinental
ancestry. In this way, GA is distinct from the socially as-
cribed and more subjective categories of race and ethnicity
(7,8).

Studies of GA have been widely used to illuminate the
complex evolutionary history of our species (9–16). GA in-
ference can also be used to help understand how genetic
variation within and between populations contributes to
health and disease. For example, the characterization of
GA is crucial for the application of genome-wide associa-
tion studies and polygenic risk prediction to globally diverse
populations (17–19). GA can be used to help decompose ge-
netic and environmental contributions to health disparities
since it is characterized independently of the social dimen-
sions of race and ethnicity (7,8).

There are numerous programs available for GA inference
(6), including tools that characterize genome-wide ances-
try (20,21) and local ancestry (22), along with applications
for fine-scale ancestry and admixture (23). Current meth-
ods for GA inference produce accurate and reliable results,
but they do not scale well to increasingly large genomic
datasets. Biobanks projects, such as the UK Biobank (24)
and the NIH All of Us project (25), are generating genome-
wide variant datasets for hundreds of thousands of indi-
viduals, and similarly ambitious biobank projects are un-
derway around the world (26). Biobanks promise to rev-
olutionize precision medicine, but their potential will not
be fully realized without the development of the compu-
tational methods needed to analyze such massive datasets.
GA inference methods that scale to biobank-size genomic
data, while retaining the accuracy of previous generation
methods, are urgently needed.
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We present the program Rye as one solution to this chal-
lenge. Rye provides for rapid and accurate genome-wide GA
inference on biobank-size genomic datasets, and it can be
used to infer GA at continental and subcontinental levels.
Rye and its source code are made freely available; it is well
documented, easy to install and use, relies on standard ge-
nomic variant formats, and works well with limited compu-
tational resources.

MATERIALS AND METHODS

Algorithm overview

The Rye algorithm infers genome-wide ancestry fractions
for individual genomic variant samples by comparing prin-
cipal component (PC) vectors of global reference popula-
tion individuals with PC vectors of query individuals (Fig-
ure 1). Reference populations are grouped into user-defined
ancestry groups, which can be assigned at varying levels
of biogeographic and genetic relatedness (e.g. continental
or subcontinental groups). Principal component analysis
(PCA) is run on a combined variant dataset of reference and
query individual samples to yield PC vectors for all individ-
uals. PC vectors representative of each ancestry group are
computed via Markov chain Monte carlo (MCMC) opti-
mization of reference group-mean PC vectors. Finally, the
optimized ancestry-representative PC vectors are compared
with PC vectors of query individuals, using non-negative
least squares (NNLS), to generate ancestry estimates for
all individual samples, expressed as fractions of each user-
defined ancestry group.

Algorithm workflow

A schematic illustrating the details of the Rye algo-
rithm is shown in Supplementary Figure S1. Genetic
ancestry inference with Rye is performed on a user-
supplied genomic variant file that includes reference
population samples and query individual samples. An-
cestry inference with Rye proceeds via the following
steps:

1. PCA is run on the genomic variant file to yield eigenvec-
tors (i.e. vectors of PC values) for all reference and query
individuals. PC vectors are scaled from 0 to 1 for down-
stream calculations.

2. Reference individuals are grouped into user-defined an-
cestry groups, and mean scaled PC vectors are calculated
for each ancestry group.

3. Ancestry-representative PC vectors are computed
from ancestry group mean PC vectors using a nested
Metropolis-Hastings optimization procedure (see next
section for details).

4. Optimized ancestry-representative PC vectors are used
with non-negative least squares (NNLS) regression to es-
timate ancestry group fraction values for query individu-
als, with the constraint that ancestry group fraction val-
ues must sum to one. The NNLS equation below shows
an example for n PC values and m reference ancestry
groups, yielding m ancestry fractions (β) for a query in-

dividual PC vector.
⎡
⎢⎢⎣

MRe f 1
PC1 · · · MRe f 1

PCn

...
. . .

...
MRe f m
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...
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[
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]
(1)

Metropolis-hastings optimization

A nested Metropolis-Hastings procedure is used to opti-
mize two parameter sets for the ancestry-representative PC
vectors: PC weights and shrinkage values. PC weights are
used to scale the contribution of each PC to ancestry as-
signment, and shrinkage values are used to scale the val-
ues of each PC. PC weights are the same for all ancestry
groups, whereas shrinkage values are specific to each ances-
try group. PC weights are initialized using the fraction of
variance explained (i.e. the eigenvalues) for each PC from
the PCA, and shrinkage values are initialized uniformly.
The shrinkage values are used to ensure that outlier indi-
viduals, i.e. individuals with extreme PC values compared
to their ancestry group, do not bias the ancestry estimation
results. The shrinkage values are used to shrink the ancestry
group representative PC values towards a value of 0.5. Opti-
mized ancestry-representative PC vectors are calculated as:

MRef j
PCi = S

(
PC

Ref j
)

× WPCi (2)

S (x) = x + (0.5 − x)2 × s ×
∑ {−1, x > 1/2

1, x ≤ 1/2 (3)

where i ∈ [1, n] PCs, j ∈ [1, m] ancestry groups, W is the
maximum-normalized weight for PCi , and s is the shrink-
age value for PCi and ancestry group j .

Optimization of the weight and shrinkage parameters is
done using the Metropolis-Hasting algorithm, executed in
a nested manner across r rounds, t attempts within each
round, and u iterations within each attempt (Supplemen-
tary Figure S2). Rounds are executed sequentially, and
attempts are launched independently within each round.
Within each attempt, the Metropolis-Hastings algorithm is
used to iterate over weight and shrinkage parameter values,
probabilistically selecting the optimal combination of val-
ues with which to proceed after each iteration. The opti-
mization criterion is based on NNLS prediction of group-
specific ancestry values for reference individuals, as shown
in equation 1 with reference individuals treated as query in-
dividuals. Reference individuals are expected to show ances-
try values that maximally correspond to their group mem-
bership.

Algorithm testing and validation

Rye was used to estimate ancestry fractions––African, Eu-
ropean, and Native American––for three-way admixed in-
dividuals from the Americas. Rye ancestry estimates were
compared against ancestry estimates obtained with the
widely used RFMix (22), ADMIXTURE (20) and iAd-
mix programs (21). Genomic variant data were taken from
the 1000 Genomes Project (1KGP) whole genome sequence
data (27), and previously published set of Native Ameri-
can genome-wide genotypes (10). A total of 1686 reference
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Figure 1. Overview of the Rye algorithm. Rye utilizes eigenvectors (PC vectors) and eigenvalues generated by PCA of reference and query individual
genome-wide variant samples (left panel). Ancestry group-representative PC vectors are weighted via Metropolis-Hastings optimization of ancestry group-
mean PC vectors. Non-negative least squares regression (NNLS) is used to estimate GA fractions via comparison of query individual PC vectors and the
weighted ancestry group representative PC vectors.

individuals were taken from African, European, and Na-
tive American populations, and 504 query individuals were
taken from Admixed American populations (Supplemen-
tary Table S1). Genomic variant data from global reference
samples (n = 2190) and UK Biobank genomic variant data
(n = 488221) were merged and harmonized as previously
described (28–30), yielding a final merged and LD pruned
dataset of 490411 samples and 171880 variants. Variants
were merged by identifying the set of variants common to
both datasets, with strand flips and variant identifier incon-
sistencies corrected as needed. The initial merged and har-
monized variant data set was filtered for variants with >1%
missingness and <0.1% minor allele frequency among sam-
ples. The resulting data set was tested for Hardy-Weinberg
equilibrium (cutoff of 1 × 10−30) and LD pruning was
performed using the –indep-pairwise command with win-
dow size = 50 SNPs, step = 10 SNPs, and pairwise thresh-
old <0.1 using PLINK.

Algorithm accuracy was measured by comparing ob-
served ancestry fractions for three-way admixed individu-
als calculated with Rye to expected ancestry fractions calcu-
lated with RFMix and ADMIXTURE using Pearson cor-
relation (R2) and residual sum of squares (RSS) error. Sen-
sitivity of the algorithm to reference sequence selection was
measured using jackknife resampling with 10% of reference
sequences removed in each of 10 replicates. Runtime per-
formance was measured on a 40-core (Intel Xeon), 512GB
RAM system, running on Red Hat Enterprise Linux Server
release 6.10 (Santiago).

UK biobank

Rye was used to estimate ancestry fractions for seven
regional ancestry groups––African, Central Asian, East
Asian, European, Middle Eastern, Native American and
South Asian––on 488221 participants from the UK
Biobank (UKBB). UKBB participants’ genome-wide geno-
types were characterized using the UKBB Axiom Ar-
ray or United Kingdom BiLEVE Array as previously de-
scribed (24,31). UKBB participant genome-wide geno-

types were merged and harmonized with genomic vari-
ant data from global reference populations character-
ized as part of the 1KGP (27) and the Human Genome
Diversity Project (HGDP) (32) as previously described
(33,34). Reference populations were grouped into seven re-
gional ancestry groups based on their genetic and geo-
graphic affinity. Rye ancestry estimates were compared to
participants’ self-identified ethnicity (Field 21000: Ethnic
background https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?
id=21000), and Rye runtime performance was compared to
ADMIXTURE.

PCA, RFmix, ADMIXTURE and iAdmix

PCA was run using the FastPCA program (35) implemented
in PLINK v2 (36), using the command plink –pca, with
data from the first 20 PCs retained for ancestry inference
with Rye. PCA run on the merged and harmonized variant
dataset samples took 1 hour 30 minutes, with 40 threads
on a ∼512GB RAM computational server. RFMix was run
with 22 threads for 12 generations in the ‘PopPhased’ mode
with a minimum node size of five and the “-use-reference-
panels-in-EM” for two rounds of expectation maximiza-
tion (EM) (22). RFmix ancestry assignments were made
for chromosomal regions where the RFMix ancestral cer-
tainty was at least 95%. ADMIXTURE v.1.30 was run with
40 threads in the supervised mode using default settings,
with K = 3 for the admixed American populations across
K = 3–20 for the UKBB (20). iAdmix was run with de-
fault settings, where the plink genotype files were supplied
along with the HapMap3 allele frequency file derived from
African, Asian and European reference populations (21).

RESULTS AND DISCUSSION

Accuracy and runtime performance

Rye was used to characterize the genetic ancestry of three-
way admixed individuals from the Americas (Supplemen-
tary Table S1), and the observed Rye results were compared
to expected results obtained from the widely used RFMix,

https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21000
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Figure 2. Accuracy and runtime performance. (A) GA estimates––African (blue), European (orange), and Native American (red)––are compared for Rye
(y-axis) and RFMix (x-axis) for n = 2190 Admixed American and reference individuals. (B) Accuracy of Rye measured by residual sum of squares (RSS)
and R2 across a range of optimization rounds and iterations. (C) Runtime performance of Rye across a range of optimization rounds and iterations.

ADMIXTURE and iAdmix programs. Rye is run using
a nested optimization approach across a specified number
of rounds, attempts, and iterations. Fractions of African,
European, and Native American ancestry estimated for
Rye and RFMix are highly correlated at both the low and
high end of the numbers of rounds and iterations (Fig-
ure 2A). Similar high correlations can be seen when Rye
ancestry fractions are compared to GA estimates inferred
with the ADMIXTURE and iAdmix programs (Supple-
mentary Figure S3). Higher numbers of rounds and itera-
tions yield more accurate results, but the increase in accu-

racy with increasing rounds and iterations is marginal (Fig-
ure 2B). Increasing the number of rounds and iterations
entails a marked decrease in runtime performance (Figure
2C). Runtime increases three-orders of magnitude at the
highest numbers of rounds and iterations; nevertheless, the
longest runtime is just over 20 min.

We assessed the sensitivity of Rye performance to
changes in ancestry group reference samples. Jacknife re-
sampling was used to remove 10% of reference samples
across 10 replicates, and this procedure was repeated across
multiple rounds and iterations (Supplementary Figure S4).
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Figure 3. GA inference on the UK Biobank (UKBB). (A) PCA of UKBB participants (gray) and ancestry group reference samples (colored as shown). (B)
PCA of UKBB participants labeled by self-identified ethnicity (colored as shown). (C) Ancestry and admixture patterns for UKBB participants, organized
by self-identified ethnicity groups. Ancestry fractions (colored as shown) are indicated for each individual. The White ethnic group is not shown to scale
owing to its large size; all other groups are scaled based on the number of participants. (D) Runtime comparison for ADMIXTURE and Rye, decomposed
into model building (the optimization step for Rye) and GA projection steps.

Rye is relatively insensitive to changes in the composition of
ancestry group reference samples. High accuracy (low RSS)
is achieved even at the lowest numbers of rounds and itera-
tions. Increasing the number rounds and iterations leads to
marginal improvements in accuracy, comparable to what is
seen when the full reference sample sets are used.

Biobank scale performance

The scalability of Rye was evaluated using the UK
Biobank (UKBB); genetic ancestry estimates were com-
puted for 488221 participants. The genetic relationship
among UKBB participants and reference samples from
seven regional ancestry groups, computed using PCA, are
shown in Figure 3A. UKBB participants’ self-identified eth-
nicity are mapped onto their genetic relationships in Fig-

ure 3B. Genetic ancestry fractions for each of the seven re-
gional ancestry groups are shown for six ethnic groups (Fig-
ure 3C). The Chinese and White ethnic groups shown the
most homogenous ancestry patterns, East Asian and Euro-
pean respectively, whereas the Mixed and Other groups are
highly diverse. The Asian ethnic group shows mostly South
Asian ancestry, followed by East Asian and Middle Eastern
components. The Black ethnic group shows most African
ancestry followed by European and Middle Eastern com-
ponents. The ancestry estimates are consistent with partici-
pants’ self-identified ethnic backgrounds, which is a second
level of ethnic identity beneath the ethnic group designation
(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21000).

Rye can also be used for subcontinental GA inference
via the delineation of more fine-scale reference ancestry
groups (Figure 4). When Rye is run in this way, it re-

https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21000
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Figure 4. Fine-scale GA inference with Rye. Results for UKBB, 1KGP and Native American reference and query individuals are shown. GA estimates
for (A) East Asian, (B) South Asian, (C) African and (D) European query individuals from UKBB are shown along with 1KGP and Native American
reference populations.

veals clearly distinct ancestry components that constitute
broader East Asian, South Asian, African, and European
ancestry groups. For example, UKBB participants that
identify Pakistani, Indian, and Bangladeshi ethnic back-
grounds, within the broader Asian ethnic group, show a
gradient of distinct ancestry patterns. Similar results can
be seen for African and European ancestry. African refer-
ence populations show distinct fine-scale ancestry patterns,
and admixed New World African populations show largely
similar African ancestry but distinct non-African admix-
ture patterns. Rye clearly distinguishes northeastern, north-
western, southeastern, and southwestern ancestry compo-
nents within Europe. As was seen for continental ancestry
inference, the European subcontinental ancestry compo-
nents inferred with Rye are significantly concordant with re-
sults from ADMIXTURE (Supplementary Figure S5). Rye
infers greater Northwest European ancestry in the UKBB

British sample, consistent with the demographics of the par-
ticipants, whereas ADMIXTURE infers more Southeast
European ancestry in the UKBB sample.

The runtime performance of Rye on the 488221 UKBB
participants was compared to ADMIXTURE (Figure 3C).
The runtime for both programs was decomposed into model
building and projection phases. For Rye, model building
corresponds to optimization phase and projection corre-
sponds to the NNLS ancestry fraction calculation. Opti-
mization was performed at the high end of Rye options, with
200 rounds and 200 iterations, to yield a conservative run-
time estimate. Overall, Rye is >50× faster than ADMIX-
TURE: 2687 se for Rye (∼45 min) compared to 136031
s for ADMIXTURE (∼38 h). Model building is ∼2× faster
in ADMIXTURE, but this can be attributed to the large
number of rounds and iterations used for Rye optimization,
which can be substantially reduced without appreciable loss
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of accuracy. RFMix runs prohibitively slow on a dataset of
this size, and therefore its runtime performance could not
be directly compared to Rye. It is estimated that RFMix
would take more than two years to characterize a dataset
of this size on the system used here.

User considerations and options

Documentation and instructions for running Rye are
provided on the GitHub repository: https://github.com/
healthdisparities/rye. Starting with a merged reference and
query genotype file, users need to run PCA and provide Rye
with the output eigenvalue and eigenvector files. Samples in
the eigenvector output file should include population labels
in the first column and sample identifiers in the second col-
umn. Rye also requires a population to ancestry group map-
ping file. These three files are the only required arguments
for Rye: –eigenval –eigenvec –pop2group. Other important
arguments for Rye include the number of rounds, attempts,
and iterations. Higher numbers for each yield more accurate
ancestry estimates at the cost of slower runtime (Figure 2B).
The default settings are set towards the upper end for these
values, yielding the most accurate ancestry estimates. Users
with large datasets or limited computational resources may
considering reducing the value of these parameters. An or-
der of magnitude time savings can be achieved in this way
with little loss of accuracy (Figure 2A).

The choice of individual reference samples to be used for
each ancestry group is an important consideration when
using Rye. The optimization criteria for the Metropolis-
Hastings algorithm assumes that reference individuals will
have close to 100% ancestry for each reference group. Ac-
cordingly, the use of individuals with distinct ancestry, or
admixed individuals, within the same ancestry group could
impact the accuracy of ancestry estimates. Users are advised
to select a subset of individuals from any given reference
population, or closely related group of reference popula-
tions, that have highly similar and coherent ancestry pat-
terns. It is not always possible to depend on population la-
bels to choose a coherent reference individual sample set.

Limitations and future directions

Rye is currently designed to run in supervised mode with
user-specified reference ancestry groups. This reflects its in-
tended use for population biobank data from cosmopolitan
countries where the admixture (ancestry) components are
generally known. This design allows users to infer ances-
try across multiple levels of scale, e.g. continental and sub-
continental, as demonstrated via the application to the UK
Biobank data (see Figures 3 and 4). Given this potential lim-
itation, compared to ancestry inference programs that can
run in both supervised and unsupervised mode, we plan to
incorporate an unsupervised mode in future development
plans.

Rye can infer GA at both the continental and subconti-
nental levels using data from individual (unlinked) genomic
variants. Information provided by haplotypes of linked
variants could, in principle, provide for even greater reso-
lution of fine-scale ancestry inference. Our future develop-
ment efforts for biobank-scale ancestry inference also in-
clude haplotype-informed methods for fine-scale analysis.

DATA AVAILABILITY

The Rye program, its source code and documentation are
freely distributed on the GitHub repository: https://github.
com/healthdisparities/rye.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

This study was made possible by the United Kingdom
Biobank application number 65206.

FUNDING

A.B.C., L.R., E.T.N., M.A., S.S. and I.K.J. were sup-
ported by the IHRC-Georgia Tech Applied Bioinfor-
matics Laboratory [RF383]; L.M.R. was supported by
the National Institutes of Health (NIH) Distinguished
Scholars Program (DSP) and the Division of Intramu-
ral Research (DIR) of the National Institute on Minor-
ity Health and Health Disparities (NIMHD) at NIH [1ZI-
AMD000016 and 1ZIAMD000018]. Funding for open ac-
cess charge: IHRC [RF383]; NIMHD [1ZIAMD000016
and 1ZIAMD000018].
Conflict of interest statement. None declared.

REFERENCES
1. Mathieson,I. and Scally,A. (2020) What is ancestry?PLoS Genet., 16,

e1008624.
2. Royal,C.D., Novembre,J., Fullerton,S.M., Goldstein,D.B., Long,J.C.,

Bamshad,M.J. and Clark,A.G. (2010) Inferring genetic ancestry:
opportunities, challenges, and implications. Am. J. Hum. Genet., 86,
661–673.

3. Wohns,A.W., Wong,Y., Jeffery,B., Akbari,A., Mallick,S., Pinhasi,R.,
Patterson,N., Reich,D., Kelleher,J. and McVean,G. (2022) A unified
genealogy of modern and ancient genomes. Science, 375, eabi8264.

4. Nielsen,R., Akey,J.M., Jakobsson,M., Pritchard,J.K., Tishkoff,S. and
Willerslev,E. (2017) Tracing the peopling of the world through
genomics. Nature, 541, 302–310.

5. Hellenthal,G., Busby,G.B.J., Band,G., Wilson,J.F., Capelli,C.,
Falush,D. and Myers,S. (2014) A genetic atlas of human admixture
history. Science, 343, 747–751.

6. Schraiber,J.G. and Akey,J.M. (2015) Methods and models for
unravelling human evolutionary history. Nat. Rev. Genet., 16,
727–740.

7. Yudell,M., Roberts,D., DeSalle,R. and Tishkoff,S. (2016) SCIENCE
AND SOCIETY. Taking race out of human genetics. Science, 351,
564–565.

8. Borrell,L.N., Elhawary,J.R., Fuentes-Afflick,E., Witonsky,J.,
Bhakta,N., Wu,A.H.B., Bibbins-Domingo,K.,
Rodriguez-Santana,J.R., Lenoir,M.A., Gavin,J.R. 3rd et al. (2021)
Race and genetic ancestry in medicine - a time for reckoning with
racism. N. Engl. J. Med., 384, 474–480.

9. Tishkoff,S.A., Reed,F.A., Friedlaender,F.R., Ehret,C., Ranciaro,A.,
Froment,A., Hirbo,J.B., Awomoyi,A.A., Bodo,J.M., Doumbo,O.
et al. (2009) The genetic structure and history of Africans and
African Americans. Science, 324, 1035–1044.

10. Reich,D., Patterson,N., Campbell,D., Tandon,A., Mazieres,S.,
Ray,N., Parra,M.V., Rojas,W., Duque,C., Mesa,N. et al. (2012)
Reconstructing Native American population history. Nature, 488,
370–374.

11. Novembre,J., Johnson,T., Bryc,K., Kutalik,Z., Boyko,A.R.,
Auton,A., Indap,A., King,K.S., Bergmann,S., Nelson,M.R. et al.
(2008) Genes mirror geography within Europe. Nature, 456, 98–101.

https://github.com/healthdisparities/rye
https://github.com/healthdisparities/rye
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad149#supplementary-data


e44 Nucleic Acids Research, 2023, Vol. 51, No. 8 PAGE 8 OF 8

12. Li,J.Z., Absher,D.M., Tang,H., Southwick,A.M., Casto,A.M.,
Ramachandran,S., Cann,H.M., Barsh,G.S., Feldman,M.,
Cavalli-Sforza,L.L. et al. (2008) Worldwide human relationships
inferred from genome-wide patterns of variation. Science, 319,
1100–1104.

13. Ioannidis,A.G., Blanco-Portillo,J., Sandoval,K., Hagelberg,E.,
Barberena-Jonas,C., Hill,A.V.S., Rodriguez-Rodriguez,J.E., Fox,K.,
Robson,K., Haoa-Cardinali,S. et al. (2021) Paths and timings of the
peopling of Polynesia inferred from genomic networks. Nature, 597,
522–526.

14. Homburger,J.R., Moreno-Estrada,A., Gignoux,C.R., Nelson,D.,
Sanchez,E., Ortiz-Tello,P., Pons-Estel,B.A., Acevedo-Vasquez,E.,
Miranda,P., Langefeld,C.D. et al. (2015) Genomic insights into the
ancestry and demographic history of South America. PLos Genet.,
11, e1005602.

15. Bryc,K., Durand,E.Y., Macpherson,J.M., Reich,D. and
Mountain,J.L. (2015) The genetic ancestry of African Americans,
Latinos, and European Americans across the United States. Am. J.
Hum. Genet., 96, 37–53.

16. Baharian,S., Barakatt,M., Gignoux,C.R., Shringarpure,S.,
Errington,J., Blot,W.J., Bustamante,C.D., Kenny,E.E.,
Williams,S.M., Aldrich,M.C. et al. (2016) The great migration and
African-American genomic diversity. PLoS Genet., 12, e1006059.

17. Martin,A.R., Kanai,M., Kamatani,Y., Okada,Y., Neale,B.M. and
Daly,M.J. (2019) Clinical use of current polygenic risk scores may
exacerbate health disparities. Nat. Genet., 51, 584–591.

18. Atkinson,E.G., Maihofer,A.X., Kanai,M., Martin,A.R.,
Karczewski,K.J., Santoro,M.L., Ulirsch,J.C., Kamatani,Y.,
Okada,Y., Finucane,H.K. et al. (2021) Tractor uses local ancestry to
enable the inclusion of admixed individuals in GWAS and to boost
power. Nat. Genet., 53, 195–204.

19. Simonin-Wilmer,I., Orozco-Del-Pino,P., Bishop,D.T., Iles,M.M. and
Robles-Espinoza,C.D. (2021) An overview of strategies for detecting
genotype-phenotype associations across ancestrally diverse
populations. Front. Genet., 12, 703901.

20. Alexander,D.H., Novembre,J. and Lange,K. (2009) Fast model-based
estimation of ancestry in unrelated individuals. Genome Res., 19,
1655–1664.

21. Bansal,V. and Libiger,O. (2015) Fast individual ancestry inference
from DNA sequence data leveraging allele frequencies for multiple
populations. BMC Bioinf., 16, 4.

22. Maples,B.K., Gravel,S., Kenny,E.E. and Bustamante,C.D. (2013)
RFMix: a discriminative modeling approach for rapid and robust
local-ancestry inference. Am. J. Hum. Genet., 93, 278–288.

23. Lawson,D.J., Hellenthal,G., Myers,S. and Falush,D. (2012) Inference
of population structure using dense haplotype data. PLoS Genet., 8,
e1002453.

24. Bycroft,C., Freeman,C., Petkova,D., Band,G., Elliott,L.T., Sharp,K.,
Motyer,A., Vukcevic,D., Delaneau,O., O’Connell,J. et al. (2018) The
UK Biobank resource with deep phenotyping and genomic data.
Nature, 562, 203–209.

25. All of Us Research Program, I., Denny,J.C., Rutter,J.L.,
Goldstein,D.B., Philippakis,A., Smoller,J.W., Jenkins,G. and
Dishman,E. (2019) The “all of us” research program. N. Engl. J.
Med., 381, 668–676.

26. Abul-Husn,N.S. and Kenny,E.E. (2019) Personalized medicine and
the power of electronic health records. Cell, 177, 58–69.

27. Genomes Project, C., Auton,A., Brooks,L.D., Durbin,R.M.,
Garrison,E.P., Kang,H.M., Korbel,J.O., Marchini,J.L., McCarthy,S.,
McVean,G.A. et al. (2015) A global reference for human genetic
variation. Nature, 526, 68–74.

28. Nagar,S.D., Conley,A.B., Chande,A.T., Rishishwar,L., Sharma,S.,
Marino-Ramirez,L., Aguinaga-Romero,G., Gonzalez-Andrade,F.
and Jordan,I.K. (2021) Genetic ancestry and ethnic identity in
Ecuador. HGG Adv., 2, 100050.

29. Jordan,I.K., Rishishwar,L. and Conley,A.B. (2019) Native American
admixture recapitulates population-specific migration and settlement
of the continental United States. PLos Genet., 15, e1008225.

30. Conley,A.B., Rishishwar,L., Norris,E.T., Valderrama-Aguirre,A.,
Marino-Ramirez,L., Medina-Rivas,M.A. and Jordan,I.K. (2017) A
comparative analysis of genetic ancestry and admixture in the
Colombian populations of Choco and Medellin. G3 (Bethesda), 7,
3435–3447.

31. Welsh,S., Peakman,T., Sheard,S. and Almond,R. (2017) Comparison
of DNA quantification methodology used in the DNA extraction
protocol for the UK Biobank cohort. BMC Genomics, 18, 26.

32. Bergstrom,A., McCarthy,S.A., Hui,R., Almarri,M.A., Ayub,Q.,
Danecek,P., Chen,Y., Felkel,S., Hallast,P., Kamm,J. et al. (2020)
Insights into human genetic variation and population history from
929 diverse genomes. Science, 367, eaay5012.

33. Nagar,S.D., Napoles,A.M., Jordan,I.K. and Marino-Ramirez,L.
(2021) Socioeconomic deprivation and genetic ancestry interact to
modify type 2 diabetes ethnic disparities in the United Kingdom.
EClinicalMedicine, 37, 100960.

34. Nagar,S.D., Conley,A.B., Sharma,S., Rishishwar,L., Jordan,I.K. and
Marino-Ramirez,L. (2021) Comparing genetic and
socioenvironmental contributions to ethnic differences in C-reactive
protein. Front. Genet., 12, 738485.

35. Galinsky,K.J., Bhatia,G., Loh,P.R., Georgiev,S., Mukherjee,S.,
Patterson,N.J. and Price,A.L. (2016) Fast principal-component
analysis reveals convergent evolution of ADH1B in Europe and East
Asia. Am. J. Hum. Genet., 98, 456–472.

36. Chang,C.C., Chow,C.C., Tellier,L.C., Vattikuti,S., Purcell,S.M. and
Lee,J.J. (2015) Second-generation PLINK: rising to the challenge of
larger and richer datasets. Gigascience, 4, 7.


