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Molecular epidemiology and typing

Epidemiology entails the study of population
distributions of determinants of health and dis-
ease, and molecular approaches to epidemi-
ology rely on the analysis of genetically
encoded biomarkers and risk factors (Wang
et al., 2015). Molecular epidemiology studies
are critically important for public health surveil-
lance as well as disease management and
control. In the postgenomic era, which is charac-
terized by the rapid accumulation of numerous
whole-genome sequences, molecular epidemi-
ology increasingly relies on genome-enabled
techniques. Genomic approaches to molecular
epidemiology necessitate the use of sophisti-
cated computer algorithms capable of analyzing
massive amounts of data for the presence and
distribution of genetic markers and risk factors.
In this chapter, we cover the state-of-the-art

with respect to the computational genomic
approaches used to support molecular epidemi-
ology and typing.

Molecular typing refers to the identification of
the specific “types” of microbial pathogens that
cause infectious disease. For the most part, this
concerns the set of procedures used to identify
distinct strains of bacteria within a given species.
Accordingly, molecular typing techniques
require a high level of resolution to distinguish
very closely related organisms, which is critically
important for molecular epidemiology (Wang
et al., 2015). The accurate identification and
discrimination of bacterial strains within a given
pathogenic species allows scientists to (i) address
the underlying biology of bacterial pathoge-
nicity, including virulence, transmissibility, and
response to drugs and vaccines, (ii) track the
spread of bacterial pathogens locally and glob-
ally, (iii) identify natural hosts for bacterial
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pathogens and associate them with specific
outbreaks, and (iv) infer the evolution and pop-
ulation structure of bacterial pathogens. The
fundamental knowledge gained from the molec-
ular typing of bacterial pathogens facilitates the
design of public health strategies for the control
and prevention of infectious disease, including
tailored treatment schemes, vaccine develop-
ment, and vaccine surveillance programs.

Early approaches to molecular typing
employed awide variety of surrogate techniques
that allowed for the indirect study of genetic
variation among bacterial pathogens. These
surrogate techniques measured the properties
of bacterial proteins or cell surface antigens, via
Western or immunoblotting and serotyping,
for example, or nucleic acids assayed via
nonsequencing-based techniques, such as
restriction fragment length polymorphisms or
polymerase chain reaction (PCR). While the
development and application of these early
molecular techniques provided an important
advance in bacterial typing, they were difficult
to standardize, replicate, and scale-up. Perhaps,
most importantly, surrogate techniques for
molecular typing did not yield the depth of reso-
lution needed to unambiguously distinguish
closely related strains within multiple species
of bacterial pathogens. The introduction of
genetic sequenceebased techniques for molecu-
lar typing provided a quantum leap in terms of
resolution, stability, and reproducibility for the
typing of bacterial pathogens.

Multilocus sequence typing

The first bona fide gene sequenceebased tech-
nique developed for bacterial typing is referred
to as multilocus sequence typing (MLST).
MLST was developed by the group of Martin
Maiden at Oxford University for the analysis of
Neisseria meningitidis and was intended to be a
so-called “portable” typing scheme with results
that could be directly compared among different

laboratories around the world (Maiden et al.,
1998). It should be noted that the sequencing
and analysis of 16S ribosomal RNA genes (or
16S rRNA) has also been widely used for the
characterization of the evolutionary relation-
ships among bacterial species and predates
MLST by more than 20 years. However, 16S
rRNA sequencing typically does not provide suf-
ficient resolution for the discrimination of
distinct strains within bacterial species. Indeed,
Maiden and colleagues have provided an over-
view of the resolution of a variety of sequence-
based typing schemes and show that 16S rRNA
sequence analysis provides the most reliable res-
olution at the level of bacterial genus and above
(Maiden et al., 2013).

MLST employs typing schemes that are spe-
cifically tailored for individual bacterial species.
Species-specific MLST typing schemes rely on
sequencing fragments of a set of housekeeping
genes, typically seven to nine loci, which are
distributed around the genome. Essential house-
keeping genes are chosen for MLST to ensure
that the loci are universally present among
isolates that are to be typed. Distinct gene
sequences for each locus in an MLST scheme
are referred to as alleles, anddifferences between
alleles across all loci in the scheme are used to
distinguish specific types (or strains) of bacteria
within a species. Each distinct sequence (allele)
of a given MLST locus is identified by a gene
(locus) name and an integer number that
uniquely identifies the allele. Locus-specific
integer numbers denote the order of discovery
for the alleles at that locus. For example, the
ABC transporter ATP-binding gene abcZ is one
of seven loci used as part of the traditional
N. meningitidis MLST scheme; unique alleles of
abcZ are denoted as abcZ_1, abcZ_2, etc., and
as of this writing 881 distinct abcZ alleles have
been identified in N. meningitidis. The combina-
tion of alleles characterized across all loci of the
MLST scheme defines an allelic profile which
is labeled with an arbitrary number that iden-
tifies a sequence type (ST). For example, for
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N. meningitidis, the combination of the alleles
abcZ_1, adk_3, aroE_4, fumC_7, gdh_1, pdhC_1,
and pgm_3 results in the allelic profile 1e3e4e7
e1e1e3 that represents sequence type 2 (ST2)
(Fig. 18.1). Each species-specific MLST scheme
uses a database that contains all the known al-
leles for each locus in the scheme and a table
that associates each observed allelic profile
with an ST. To characterize an isolate, the seven
loci of the scheme of the species under study are
sequenced, and each locus-specific sequence is
compared to the allele database of the scheme,
using a sequence similarity search program
such as BLASTþ (Camacho et al., 2009), to
generate the allelic profile of the isolate. Finally,
the unique ST identifier for the isolate is
retrieved from the table of allelic profiles. STs
for multiple isolates can be compared, using a
minimum spanning tree for example
(Fig. 18.1), to get a sense of the scope of diversity
found in a given study.

MLST was introduced in 1998, about 6 years
before start of the next-generation sequencing

(NGS) revolution. At that time, sequencing was
done using the Sanger method, which despite
numerous technological improvements over the
years was still relatively low-throughput, labor-
intensive, time-consuming, and expensive.
Given the technological limitations at the time,
MLST was designed in such a way as to capture
genome-wide patterns of sequence variation via
sequencing a very small portion of the entire
genome. For instance, MLST alleles in the orig-
inal N. meningitidis typing scheme are approxi-
mately 450 bp long per locus. The total length
of the seven allele sequences in this scheme is
3,284 bp, which represents a mere w0.1% of an
entire 2.3 Mbp N. meningitidis genome sequence.
It is quite remarkable to consider how successful
MLST has been for (fairly) high resolution bacte-
rial typing given the diminishingly small per-
centage of overall genome sequence diversity
that is represented in each scheme.

One way that MLST was scaled-up was
through the use of 96-well plates to performmul-
tiple simultaneous PCRs for specific amplicons

FIGURE 18.1 Graphic representation of the multilocus sequence typing (MLST) method. An example is shown for the
traditional MLST scheme used for Neisseria meningitidis. Seven different loci, distributed around the genome (not shown to
scale), are used for this scheme. Unique allele sequences for each locus are characterized and compared against a species-
specific MLST database to yield an allelic profile, and each allelic profile is then associated with a specific sequence type
(ST). Multiple STs from one or more studies can be compared using phylogenetic analyses to characterize the extent of diversity
and relationships seen among a set of bacterial isolates.
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across different bacterial isolates. PCR products
were then characterized using Sanger sequencing
reactions and analyzed on a parallel capillary
electrophoresis instrument.MLST software pack-
ages, first STARS and laterMGIP, were then used
to automatically convert Sanger sequencing chro-
matograms to allele calls and sequence types
(Katz et al., 2009). Further extensions of MLST
were developed by including additional loci,
particularly more variable antigen encoding
loci, to yield so-called MLSTþ or extended
MLST (eMLST) schemes. Extended schemes for
N. meningitidis typically include combinations
of an additional six loci, including the porA,
porB, fHbp, and fetA antigen encoding genes.
The inclusion of antigen encoding genes not
only provides additional resolution to traditional
MLST schemes but can also yield valuable
information with respect to vaccine design and
measurement of response.

Impact of NGS on bacterial typing schemes

The advent of NGS techniques, and the result-
ing explosion of bacterial genome sequences
(Fig. 18.2), has led to the development of new
genome-enabled approaches for bacterial
typing. First and foremost, it quickly became
faster and more cost-effective to sequence an
entire genome of a bacterial isolate using NGS
platforms (initially Roche 454 and now primarily
Illumina) than to amplify multiple specific MLST
loci and perform Sanger sequencing on individ-
ual amplicons. Whole-genome sequencing obvi-
ously yields a massive amount of data far in
excess of what is provided by traditional seven
to nine loci MLST schemes. This explosion of
sequence data presented two distinct opportu-
nities for bacterial typing, each of which came
with its own set of computational challenges:
(1) the use of whole-genome sequence data for

FIGURE 18.2 Growth in whole-genome sequencing (WGS) of bacterial pathogens in the last 7 years. The graph repre-
sents the number of WGS data submitted to NCBI’s Pathogen Detection database since 2011.
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existing MLST schemes and (2) the development
of novel, larger-scale typing schemes, which
avail themselves of the substantial data gener-
ated by NGS. We will cover these two broad
technological developments in turn, with an
emphasis on the computational approaches
used for each.

Given the ability to readily generate whole-
genome sequences via NGS, one may wonder
why a small-scale approach like MLST would be
needed at all. It may seem more desirable to sim-
ply discard the MLST approach and move on to
techniques that better leveragegenome-scaledata-
sets. The answer to this question has todowith the
vast amount of critically important legacy data
that have been generated by the application of
MLST schemes to scores of bacterial pathogens
over the years. The most widely used MLST
scheme databasedPubMLST https://pubmlst.
org/databases/dcurrently hosts MLST schemes
for 99 species (or genera) of bacterial pathogens
along with 10 eukaryotic (fungal) pathogens, bac-
teriophages, and plasmids. These schemes cover
many tens of thousands of distinct allelic
sequences and have been widely applied in hun-
dreds of molecular epidemiology studies around
the world, including routine surveillance and
outbreak investigations. Together, these data
and results represent a wealth of information
relating bacterial genome sequence variation to
determinants of infectious disease. As such, it
will remain critically important to continue char-
acterizing bacterial isolates with respect to their
MLST sequence types. Of course, with whole-
genome sequences in hand, it will also be possible
to apply one or more of the new larger-scale
typing schemes to the same datasets used to
generate MLST sequence types. These two
approaches are by no means mutually exclusive.

The remaining importance ofMLST in the post-
genomic era, combinedwith the fact that it is now
faster and cheaper to sequence whole genomes
using NGS platforms than to Sanger sequence
MLST amplicons, necessitates the development

and application of computational techniques for
MLST analysis using NGS datasets. Indeed, there
has been a substantial developmental effort for
genome-enabled MLST software over the last
8 years. As of this writing, there are at least 13
different genome-based computational methods
for MLST analysis (Table 18.1). Our own group
developed the program stringMLST, which uses
a distinct k-mer-based approach for genome-
enabled MLST to yield extremely rapid and
100% accurate MLST sequence types directly
from NGS read data. k-mers are sequence
substrings, or words, of length k. This
alignment-free k-mer-based approach represents
a substantial technological advance for computa-
tional methods for genome-enabledMLST, which
other groups have recently extended.

Genome sequenceebased approaches for
MLST can be broadly classified into two
groupsd(i) classic alignmentebased methods
that use genome assembly and/or read mapping
and (ii) newer alignment-free approaches that
utilize k-mers to derive sequence types directly
from NGS read data (Fig. 18.3).

Alignment-based computational methods

Alignment-based methods for MLST, or other
locus-based typing schemes, entail the compari-
son between isolate allele sequences and typing
scheme databases using sequence similarity
searches (Fig. 18.3A). A number of these
approaches require an assembly step to work
with short read data generated by NGS plat-
forms. Once the NGS read data are assembled
into longer contiguous (contig) sequences, they
are compared with allele and profile databases
to generate sequence types. Examples of this
kind of typing software include BIGSdb (Jolley
and Maiden, 2010), MLSTcheck (Page et al.,
2016), and MLSTar (Ferres and Iraola, 2018).
Genome assembly is computationally expensive,
in terms of both CPU time and memory, and it
can require substantial bioinformatics expertise
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TABLE 18.1 List of Alignment-based and alignment-free methods for multilocus sequence typing.

Computational
tool Description

Input data
type

User
interface Website

Release
year Reference

Alignment-based method algorithms that utilize de novo assembly, genome mapping, and/or sequence alignment

BIGSdb Database and analytical platform
designed for microbial loci-based
typing schemes. Open-source,
freeware, locally installable;
base platform for PubMLST website;
utilizes BLAST

Genome,
gene
sequences

Web/
GUI

https://pubmlst.
org/software/
database/bigsdb

2010 Jolley &

Maiden

(2010)

MLSTcheck Automated, scalable command line tool
for determining MLST from genome
sequences; utilizes BLAST

Genome
sequences

CLI https://www.
sanger.ac.uk/
science/tools/
mlstcheck

2016 Page et al.

(2016)

MLSTar R-based package to determining MLST
from genome sequences; utilizes BLAST

Genome
sequences

CLI https://github.
com/iferres/
MLSTar

2018 Ferres &

Iraola (2018)

chewBBACA Comprehensive pipeline for creation of
whole- and core-genome MLST
(wgMLST and cgMLST) as well as
determining wgMLST/cgMLST from
genome sequences using BLAST Score
Ratio (BSR)

Genome
sequences

CLI https://github.
com/B-UMMI/
chewBBACA

2018 Silva et al.

(2018)

DTU CGE
MLST 2.0

Web-based application for performing
MLST analysis; utilizes de novo
assembly and BLAST for MLST

Genome
sequences;
NGS reads

Web/
GUI

https://cge.cbs.
dtu.dk/services/
MLST

v1: 2012
v2: e

Larsen et al.

(2012)

SRST/SRST2 Read-to-genome mappingebased
application for performing MLST
from NGS read data

NGS reads CLI https://katholt.
github.io/srst2/

v1: 2012
v2: 2014

Inouye et al.

(2014)

MOST Modification of SRST2 for MLST
analysis and Salmonella serotyping
from NGS reads

NGS reads CLI https://github.com/
phe-bioinformatics/
MOST

2016 Tewolde

et al. (2016)

ARIBA Pipeline that performs read-to-gene
mapping followed by targeted assembly

NGS reads CLI https://github.
com/sanger-
pathogens/ariba

2017 Hunt et al.

(2017)

Kestral Novel algorithm that uses k-mers and
dynamic programmingebased local
alignment to perform MLST

NGS reads CLI https://github.
com/paudano/
kestrel

2017 Audano et al.

(2018)

Alignment-free algorithms that do not utilize assembly- or alignment-based techniques

stringMLST Loci-based typing using k-mer
counting
and hash tables

NGS reads CLI https://github.
com/jordanlab/
stringMLST/

2017 Gupta et al.

(2017)

STing Computationally efficient
implementation of stringMLST;
utilizes k-mer frequencies
and enhanced suffix arrays

NGS reads CLI e e Espitia et al.

(2017)
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to generate reliable results. As such, assembly
represents a major bottleneck for genome-
enabled molecular typing studies, and these ap-
proaches do not scale well when hundreds of
isolates need to be characterized. Assembly-
based methods are also difficult to implement
for larger-scale locus-based typing schemes that
employ hundreds or thousands of genome-
wide loci.

Another class of algorithms for bacterial typing
with NGS data uses short read mapping to
referencesequencesasamorecomputationallytrac-
table alternative toassembly-basedmethods.These
methodscanstillbeconsideredasalignment-based,
because they rely on read-to-genome alignments;
nevertheless, they are substantially more efficient
compared with assembly-based methods. The
Center for Genomic Epidemiology (http://www.
genomicepidemiology.org/) provides a genome-
based web platform for MLST, which previously
implemented an assembly-based approach and
has since evolved to use read mapping for allele
calling (Larsen et al., 2012). The first program
designed specifically to do NGS-based bacterial
typing via read mapping was SRST (Inouye
et al., 2014), which was subsequently modified
by the same group to develop SRST2 and another
group to develop the program MOST for Salmo-
nella serotyping (Tewolde et al., 2016). More
recently, the program ARIBA implemented a
hybrid approach that uses read mapping to clus-
ters of related alleles followed by constrained
assembly of reads that map to specific clusters
(Hunt et al., 2017).

Alignment-free computational methods

The development of alignment-free methods
for genome-based molecular typing with NGS
data was a major breakthrough that provided
substantial increases in speed and efficiency
compared with existing assembly or read map-
ping approaches. As the name implies, these
methods proceed directly from raw NGS
sequence read datadwithout any quality con-
trol, alignment, or assembly stepsdto call alleles
and sequence types (Fig. 18.3B). The program
stringMLST, developed by our group, was the
first program of this kind designed for bacterial
typing directly from NGS data (Gupta et al.,
2017). stringMLST was designed and imple-
mented to provide a turn-key solution of bacte-
rial typing from genome sequence data, with
minimal requirements for computational capac-
ity or bioinformatics expertise.

The stringMLST algorithm relies on the use of
k-mer frequencies and hash tables for character-
izing the sequence types of bacterial isolates
directly from genome sequence read data. To
type bacterial isolates from any given species,
stringMLST requires a database built from the al-
leles of the species-specific typing scheme. To
construct the typing scheme database,
stringMLST generates all possible k-mers from
each allele sequence in the scheme and stores
them in a hash table that associates each k-mer
with all of the alleles in which it can be found.
To characterize an isolate sample, the
stringMLST algorithm performs three steps:

TABLE 18.1 List of Alignment-based and alignment-free methods for multilocus sequence typing.dcont'd

Computational
tool Description

Input data
type

User
interface Website

Release
year Reference

MentaLiST Loci-based typing using k-mer counting
followed by colored de Bruijn graph
construction

NGS reads CLI https://github.
com/WGS-TB/
MentaLiST

2018 Feijao et al.

(2018)

Krocus Loci-based typing from long-read
sequencing data; utilizes k-mer
counting

Long-read
sequences

CLI https://github.
com/andrewjpage/
krocus

2018 Page &

Keane (2018)
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(i) filtering, (ii) k-mer counting, and (iii) report-
ing. For the filtering step, the algorithm discards
a read if the k-mer located in the middle of the
read sequence is not present in the allele k-mer

database. This heuristic step provides the bulk
of the speed and efficiency to the stringMLST al-
gorithm by passing over reads that correspond
to genomic regions not covered by the typing

FIGURE 18.3 Schematic comparison of alignment-based and alignment-free algorithms for sequence typing. The figure
provides the general overview of the two dominant paradigms for performingmultilocus sequence typing fromwhole-genome
sequence read datasets. Both methods utilize a database of allele sequences for each locus in the scheme and an allelic profile
table that contains the mapping of allele numbers to a sequence type. (A) Alignment-based typing algorithms can be further
subcategorized into assembly-based and mapping-based. Assembly-based algorithms make use of de novo genome assembly
followed by sequence similarity searching algorithms such as BLAST. Mapping-based algorithms map the read sequences to
either a reference genome or loci sequences, followed by variant identification. (B) Alignment-free algorithms utilize exact
matching of substrings, also known as k-mers, betweenNGS reads and allele sequences in the database to identify the sequence
type. Exact substring matching is computationally faster than genome assembly or sequence alignment, and these algorithms
gain further speed by comparing only a small fraction of the input read dataset and discarding all noninformative reads.
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scheme. Because this genomic fraction corre-
sponds to the vast majority of the genome
sequence for MLST schemes, only a tiny fraction
of the reads need to be fully processed by the al-
gorithm. For the k-mer counting step, if the mid-
dle k-mer is found in the allele database, then
stringMLST generates all possible k-mers from
the read sequence. The algorithm then searches
the read k-mers against all k-mers in the data-
base and updates a table of k-mer frequencies
for each associated allele. Steps (i) and (ii) are
repeated until all of the reads are processed.
For the final reporting step, the algorithm then
reports the alleles with the maximum k-mer fre-
quency for all loci in the typing scheme, thereby
generating an allelic profile and calling the corre-
sponding sequence type.

Compared with existing genome sequencee
based typing tools that utilize alignment and/
or the assembly, the stringMLST approach is
far more efficient and at least as accurate for
characterizing bacterial isolates. As reported in
Gupta et al. (2017), stringMLST was the only
tool able to correctly type each of 40 NGS sam-
ples from four different bacterial species
(Campylobacter jejuni, Chlamydia trachomatis,
N. meningitidis, and Streptococcus pneumoniae).
It was up to 65� faster than other programs
used to process the same datasets, showing an
average of 45 s to process each sample read
file. In the same study, stringMLST correctly
predicted the sequence type for 99.8% of 1002
isolates of N. meningitidis requiring an average
of 40.7 s and 0.67 MB of RAM to type each sam-
ple read file. Page et al. (2017) performed an
independent comparison of eight different pro-
grams for genome-based MLST, including
stringMLST as the only application on the cate-
gory of alignment-free based methods. In
addition to evaluating the accuracy of the tools
on NGS data from past outbreaks, they evalu-
ated the impact of sequencing depth and
sample contamination on typing speed and
accuracy using simulated data. Consistent with
our own results, stringMLST was found to be

the fastest algorithm by far and also required
substantially less computational resources than
any of the other programs. In addition,
stringMLST proved to be 100% accurate for bac-
terial typing on outbreak data, comparable to
slower and more cumbersome tools that rely
on sequence alignment and/or assembly. It is
also worth noting that stringMLST does not
require any read preprocessing or quality con-
trol, making it far easier to use than the other
tools and ideally suited for deployment in public
health laboratories or in the field. Despite the su-
perior performance of stringMLST for genome-
based MLST, it does suffer from scaling issues
when applied to larger-scale typing schemes.
We cover these issues, and how we are address-
ing them, in the subsequent sections on genome-
scale typing schemes.

Several other groups have introduced k-mer-
based typing methods since the development
of stringMLST. For example, the program
Kestrel (Audano et al., 2018) uses a hybrid
approach that combines k-mer analysis with dy-
namic programmingebased local alignment to
call MLST alleles and sequence types. However,
this approach is far slower and less efficient than
the k-mer-only method used by stringMLST,
which is 28� faster and requires an average of
w60% of the RAM compared with Kestrel. This
performance difference is likely due to the Kestrel
algorithm’s reliance on the exhaustive dynamic
programming step. The program MentaLiST
(Feijao et al., 2018) extends the stringMLST
approach of using k-mer frequencies and hash
tables, by constructing a colored de Bruijn graph
for each allele of the typing scheme. With this
addition, MentaLiST selects a subset of k-mers
that embodies the variation present in the alleles
of the typing scheme, resulting in a substantial
reduction in the size of the allele database. This
database compression allows for substantial
improvement of the computational performance
on larger typing schemes that utilize hundreds
or even thousands of loci genomewide. We cover
the computational challenges and opportunities
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entailed by these so-called superMLST schemes
in the following section. Yet another example of
new k-mer-based typing software is Krocus
(Page and Keane, 2018), designed for typing
from uncorrected long-read sequence data. A
problem with these kinds of data is that the cur-
rent long-read sequencing technologies (Pacific
Biosciences and Oxford Nanopore) exhibit high
error rates. However, base errors tend to be uni-
formly distributed, a characteristic exploited by
the Krocus developers to circumvent the high
error rate problem. Perhaps the most attractive
feature of Krocus is that it can type isolates in
real time by taking batches of long-reads pro-
duced by sequencers that support continuous
sequence streaming like those developed by
Oxford Nanopore Technologies.

Genome-enabled bacterial typing schemes

We previously described why whole-genome
sequence data are still used for small-scale locus-
based typing schemes such as MLST, owing to a
combination of the low cost and ease of genome
sequencing coupled with the epidemiological
importance of MLST legacy data. Nevertheless,
the ever increasing availability of numerous
whole-genome sequences from bacterial patho-
gens (Fig. 18.2) provides both challenges and
opportunities for the development of novel,
large-scale typing schemes, which leverage the
analysis of genome-wide variation data.
Genome-scale bacterial typing schemes can be
broadly categorized as (i) locus-based schemes
or (ii) single-nucleotide variant (SNV)ebased
schemes (Table 18.2). Locus-based typing
schemes are direct extensions of MLST that rely
on the analysis of hundreds or thousands of loci
genome wide, as opposed to the handful of loci
used by MLST schemes. For example, core-
genome MLST (cgMLST) schemes utilize all of
the loci that correspond to the core genome
with all genes shared among a set of isolates
(i.e., the intersection of genes in a set of genomes).

Whole-genome MLST (wgMLST) schemes are
even larger-scale and use all of the genes (i.e.,
the union) found in a set of genomes; this
approach includes both the core genome and
the accessory genome. These large-scale loci-
based bacterial typing schemes provide substan-
tially more resolution than traditional MLST
schemes.

In principle, SNV-based approaches to
genome analysis provide even more resolution
for the delineation of bacterial lineages than the
largest-scale loci-based schemes, because there
are far more possible single base differences
among genomes than the possible number of dif-
ferences among loci. As such, SNV-based schemes
should be able to differentiate extremely closely
related strains, down to 1 bp difference in princi-
ple. This feature makes SNV-based approaches
better for microbial forensics and epidemiological
studies that require extreme levels of resolution,
such as source attribution in a bioterrorism event
(Schmedes et al., 2016; Budowle et al., 2007) or
contact tracing studies that seek to characterize
the exact origins of bacterial outbreaks and their
spread among patients (Stucki et al., 2015). A
classic example of this approach is the single
base pair resolution typing of Vibrio cholerae
strains from the 2010 outbreak in Haiti, which
ultimately pointed to United Nations peace-
keepers from Nepal as the source of the outbreak
(Katz et al., 2013).

Nevertheless, there are a number of reasons
why locus-based typing schemes are still widely
employed for bacterial typing in the postge-
nomic era. Perhaps, most importantly, locus-
based schemes are portable and more reproduc-
ible than SNV-based schemes. Because they rely
on a predefined set of loci, and the accompa-
nying allele databases, locus-based schemes
generate results that can be directly compared
among laboratories and among different studies.
However, SNV-based schemes rely on the use of
one or more reference sequences for variant call-
ing and are thereby more difficult to standardize
among groups. The use of reference sequences
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for variant calling with SNV-based schemes can
also lead to a loss of information with respect to
accessory genes, which are often important
determinants of virulence for bacterial patho-
gens. Locus-based schemes, on the other hand,
can readily accommodate important accessory
genes via presence/absence calls for those loci.
Additional details on the relative strengths and
weaknesses of locus-based versus SNV-based
typing schemes can be found in Table 18.2.
Given the continued importance of locus-based
typing schemes for genome-enabled bacterial
typing, we focus on the computational
approaches used for these kinds of schemes in
the following sections.

Computational approaches to large-scale
typing schemes

As with MLST, large-scale bacterial typing
schemes that leverage genome-wide datasets
can be computationally implemented using
traditional alignment/assembly-based methods
or with the newer k-mer-based approaches.
However, it is becoming increasingly apparent
that the traditional methods lack the computa-
tional speed and efficiency needed to implement
such schemes for rapid bacterial typing. For
example, approaches that use de novo assembly
followed by BLAST can take upward of 12 h for
each isolate for cgMLST and/or wgMLST

TABLE 18.2 Comparison of locus-based and single-nucleotide variant (SNV)ebased typing techniques for bacterial
typing.

Locus-based typing Single nucleotide variant (SNV) typing

Advantages • Ideal for microbial genome analysis
• Allows for comparisons between

different studies/outbreaks
• Each isolate can be easily

computationally represented in a
defined space

• Availability of several online, publicly
accessible resources (tools and large
databases)

• Standardized pipelines are available
• Can be configured to analyze core and

accessory genome
• Phylogeny reconstruction methods are

simpler in nature (UPGMA, eBURST)

• Ideal for identifying and characterizing closely related microbial
isolates, e.g., for source attribution or contact tracing studies as
well as for complex Eukaryotic genome analysis, such as human

• High level of discrimination power; allows inspection of every
single-nucleotide change across the genome

• Works well if a reference genome is standardized and
internationally used

• Can be detected using both sequencing and real-time PCR-based
methods

• Diagnostic SNVs exists for fine subtyping of select agents

Disadvantages • Requires a curated database of alleles
and profile definitions

• Loci-based schemes are often restricted
to genic regions and does not capture
variation in intergenic (or intronic)
regions

• Captures gene presence/absence but
fails to capture other large structural
variations, e.g., duplications and
rearrangements

• Comparison between different studies/outbreaks is limited due
to differences in reference genome

• Requires an evolutionarily close reference genome, preferably
finished

• Mostly captures the core genome; misses variations in accessory
genome

• SNV calls are dependent on filtering criterion used
• Does not capture large structural variation events, viz.,

insertion/deletion (indels), duplications, and rearrangements
large

• Computational storage grows exponentially as SNV data
typically involves representing all sites across the genome

• Commonly used phylogenetic methods are computationally
intensive (Neighbor-Joining, Maximum Likelihood)

• Fails to capture high horizontal gene transfer (HGT)
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schemes, which require the analysis of thou-
sands of loci per isolate. As such, the traditional
methods will become increasingly irrelevant for
epidemiological studies that need to type scores,
hundreds, or even thousands of isolates. For this
reason, we focus here on the latest developments
in the computational approaches for large-scale
bacterial typing schemes.

We previously discussed how the application
of the first k-mer-based approaches for bacterial
typing in the stringMLST algorithm resulted in
orders of magnitude speed-up for MLST without
any loss of accuracy. However, the stringMLST
algorithm did not scale well to large-scale typing
schemes like cgMLST. When stringMLST was
applied to schemes of this kind, it did not
compute any faster than alignment/assembly-
based approaches and required an unrealisti-
cally large amount of memory to run. This per-
formance was because the underlying hash-
table data structure used for the allele k-mer
database are not optimally suited for large-
scale typing schemes, because it entails the stor-
age of all existing k-mers for thousands of loci.
As previously discussed, the more recently
developed program MentaLiST addressed this
challenge by using a de Bruijn graph to substan-
tially compress the allele k-mer database while
also providing for enhanced searching of the
database. This revised data structure provides
for robustdrapid and accuratedbacterial typing
using large-scale typing schemes directly from
NGS read data. Our own group is currently
developing the algorithm STing (as a successor
to stringMLST) that employs a more efficient
data structure, thereby allowing for genome-
based typing with large-scale schemes.

STing is being developed and implemented
for both bacterial typing and gene detection
directly from unprocessed NGS read data
(Espitia et al., 2017). The STing algorithm stores
the allele k-mer databases for large-scale typing
schemes using an enhanced suffix array data
structure as opposed to the simpler hash table
used by stringMLST. The suffix array provides

for a substantially compressed representation
of the allele k-mer database as well as rapid
search capability along the array. STing has
been applied to MLST, cgMLST, and wgMLST
schemes for a wide variety of bacterial patho-
gens. It can also be used for automated gene
detection directly from read sequences, and this
utility is currently being validated in the context
of antimicrobial resistance genes and virulence
factors (e.g., Shiga toxin). Preliminary results on
the performance of STing are very promising,
and a more detailed description of both the algo-
rithm and its accuracy is currently in preparation.

Community adoption of genome-based
bacterial typing

As we have mentioned several times, the
genome revolution provides both amazing op-
portunities and profound challenges to the pub-
lic health community. In principle, genome
sequence data provide for unprecedented levels
of resolution for bacterial typing, while also
generating abundant material for the discovery
of the genetic determinants of antibiotic resis-
tance and virulence. Nevertheless, there are sub-
stantial technical hurdles that need to be
overcome to ensure that the community can fully
adopt genome-enabled approaches to molecular
epidemiology along with the new bioinformatics
techniques that they necessitate.

One key feature of early sequence-based bac-
terial typing schemesdMLST in particulardwas
portability in terms of the ability to broadly
share uniformly comprehensible typing results
among member laboratories distributed among
surveillance networks. Portability refers to both
the typing techniques, which should be stan-
dardized so that they can be carried out in any
laboratory, and the typing results, which should
have the same representation irrespective of
where the results are generated. MLST is ideally
suited for portability as it relies on a shared set of
loci (allele) sequence definitions and produces
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granular and static sequence types from the
typing scheme’s allelic profiles. Larger-scale
typing schemes face a number of challenges to
ensure that they both (i) remain completely
portable and (ii) allow for comparison with the
results of previous generation typing techniques.

The challenge to portability for genome-scale
typing schemes is directly related to the scale of
these schemes,which can cover hundreds or thou-
sands of loci genomewide. The large scale of these
schemesnecessitates a highly coordinated effort to
standardize the loci (allele) definitions that under-
lie the schemes and entails far more complicated
allelic databases than is the case for MLST
schemes, which typically utilize seven to nine
loci. With respect to loci definitions, there needs
to be an agreement concerning exactly which loci
are used for any scheme and which part (i.e.,
sequence fragment) of each locus is used for
typing. This aspect is relatively straightforward
for schemes with a few loci but is substantially
more complex when hundreds or thousands of
loci are used. Furthermore, because genome-
scale typing schemes are being independently
developed in multiple public health laboratories
around the world, numerous different versions
of the same typing scheme can end up being
used. With respect to allelic databases, despite
the fact that thousands of bacterial pathogen
genome sequences have already been character-
ized, allelic and profile databases for larger
schemes are either incomplete or do not yet exist.
A coordinated effort by the public health commu-
nity will be needed to address these issues and
ensure that genome-enabled typing schemes
remain standard and portable. This process needs
tohappen soon, because itwill be difficult for indi-
vidual laboratories, or particular surveillance
networks, to change their typing schemes once
they are developed and implemented.

Another critical issue for genome-enabled
typing schemes will be the ability to maintain
some connection to the vast amount of historical
information contained in results generated from

smaller-scale legacy typing schemes. In other
words, genome-scale typing schemes should be
backward compatible, to whatever extent
possible, with previous typing schemes such as
MLST or even the nonsequence-based pulsed-
field gel electrophoresis (PFGE) typing scheme.
Public health laboratories will need to dedicate a
substantial amount of bioinformatics expertise
and effort to map the results of genome-scale
typing schemes to the results of legacy typing
schemes. An illustrative example of this challenge
is the US Centers for Disease Control and Preven-
tion (CDC) PulseNet surveillance network
(https://www.cdc.gov/pulsenet/). PulseNet
was established in 1996 as a network of public
health laboratories around the United States dedi-
cated to surveillance and outbreak detection for
food and waterborne illness caused by a priori-
tized set of bacterial pathogens. PulseNet labora-
tories use a restriction enzymeebased technique
to digest genomes of bacterial pathogen isolates.
Subsequently, PFGE generates characteristic
DNA fingerprints of the digested genomes, which
are captured as distinct banding patterns on a gel.
The implementation of PFGE across the PulseNet
surveillance network allowed for the discovery of
clusters of disease that corresponded to out-
breaks, thereby leading to better coordinated
and more rapid responses to such public health
threats. PulseNet’s use of the relatively low reso-
lution and clearly outdated PFGE technique is
expected to be phased out starting in 2019, after
which time reliance will be exclusively on the
far higher-resolution genome-enabled typing
schemes. Nevertheless, given the amount of
invaluable epidemiological information that is
tied to specific PFGE patterns, it will be critically
important to be able to relate the results of
genome-scale typing schemes to previously char-
acterized patterns. Accordingly, CDC scientists
are working to develop approaches for the prob-
abilistic association of PFGE patterns and genome
sequence variation, and our own laboratory is
involved in this effort via a collaboration with
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the CDC’s Enteric Diseases Laboratory Branch
within the Division of Foodborne, Waterborne,
and Environmental Diseases (DFWED).

The challenges for genome-enabled typing
schemes outlined abovedrelating to uniform
data standards, typing scheme portability, and
backward compatibilitydalso suggest a pressing
need for shared analytical platforms that can be
deployed in public health laboratories around
the world. Generating whole-genome sequence
data is now rapid, cost-effective, and highly stan-
dardized. Accordingly, the rate-limiting step for
genome-enabled bacterial typing corresponds to
the suite of computational analysis tools and
methods that need to be used to handle and inter-
pret the massive volumes of data generated by
NGS platforms. Here, we are considering mainly
the software challenges entailed by the use of
NGS data for bacterial typing, but there are also
substantial hardware issues that need to be
addressed. The sheer volume of data alone poses
a fundamental challenge with respect to both
computational storage and processing capacity.
It is not realistic to expect that all public health lab-
oratories will be able to address these joint chal-
lenges via the deployment of local computational
capacity. In fact, we are closely reaching the point
where it will cost less to sequence bacterial
genomes than to store the resulting sequence
data for an extended period of time. Similarly,
the computational processing power needed to
handle hundreds or thousands of genome
sequences of bacterial isolates is likely out of reach
for all but the most well-funded public health
laboratories.

Cloud computing environments, whereby
computational storage and processing are provi-
sioned as services that are accessed remotely
over the Internet, offer an attractive alternative
to the deployment of local computational capac-
ity for bacterial genome analysis. One of the
most compelling features of cloud computing is
the flexibility entailed by the on-demand model
whereby investigators only make use of the
amount of computational capacity that they

need at any given moment. This relates to both
processing power, in terms of the number and
architecture of compute cores that can be
accessed for any given analysis, and the elastic
nature of cloud data storage capacity, with
different models of data access for short-term
and longer-term storage. Over the last 5 years,
there has been a concerted effort to deploy
computational genomics algorithms and pipe-
lines across a variety of cloud computing plat-
forms. In Table 18.3, we show examples of
cloud computing resources in support of bacte-
rial genome analysis with respect to both specific
bioinformatics software packages as well as inte-
grated bioinformatics platforms. The integrated
platforms allow users to utilize existing bioinfor-
matics analysis pipelines and/or build their own
custom pipelines, which employ multiple appli-
cations to execute an entire workflow.

Despite the promise of the cloud computing
model for computational genomics, there is
currently no standardized cloud computing plat-
form to support genome-enabled bacterial
typing. Given the explosion of bacterial genome
sequences, coupled with the development of
numerous genome-scale typing schemes, we
anticipate a pressing need for the cloud deploy-
ment of a standardized genome analysis plat-
form in support of genome-enabled bacterial
typing in public health laboratories. A shared
analytical platform of this kind should consist
of (i) a uniform set of bioinformatics analysis
tools, (ii) a shared set of standard analysis proto-
cols or pipelines for the use of these tools, and
(iii) a set of well-defined data models that cover
both input and output standards for the bioinfor-
matics tools as well as the loci (allele) databases
that underlie bacterial typing for multiple
schemes across multiple species. This platform
should also include mechanisms for storing pri-
mary NGS data and secondary data (results)
generated by the analytical platform along with
transparent means for sharing data and commu-
nicating results among public health labora-
tories. Finally, the use of a unified approach to
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collect and distribute epidemiological metadata
associated with bacterial isolates characterized
as a part of routine surveillance and outbreak in-
vestigations will also be a critical component for
such a platform.

We envision that the integrated cloud
computing service and the standardized bacterial
genome analysis platform described above could
be unified into a national or global surveillance
network with constituent public health labora-
tories as nodes that are capable of both rapidly
typing bacterial isolates and widely sharing the
results with other laboratory nodes around
the world. To our knowledge, no such integrated
platform currently exists, and perhaps even
more disconcerting, there is a real possibility that
genome-enabled approaches to bacterial typing
will ultimately hamper efforts to share bacterial
typing results among different laboratories. In
particular, if different public health laboratories
continue to independently develop their own
genome-scale typing schemes, it will become
increasing difficult, if not impossible, to

meaningfully compare results among labora-
tories. Obviously, such an outcome should be
avoided at all costs; it would be truly unfortunate
if the increased resolution afforded by genome-
scale typing schemes paradoxically leads to less
resolutionon thepublic health challenges towhich
these schemes are ultimately addressed. Ensuring
that such a scenario does not come to pass will
require an ongoing effort toward the develop-
ment, standardization, and sharing of computa-
tional approaches to, and platforms for, genome-
enabled bacterial typing.
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