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ABSTRACT Azole resistance in pathogenic Aspergillus fumigatus has become a global
public health issue threatening the use of medical azoles. The environmentally occur-
ring resistance mutations, TR34/L98H (TR34) and TR46/Y121F/T289A (TR46), are wide-
spread across multiple continents and emerging in the United States. We used whole-
genome single nucleotide polymorphism (SNP) analysis on 179 nationally represented
clinical and environmental A. fumigatus genomes from the United States along with
18 non-U.S. genomes to evaluate the genetic diversity and foundation of the emergence
of azole resistance in the United States. We demonstrated the presence of clades of A.
fumigatus isolates: clade A (17%) comprised a global collection of clinical and environmen-
tal azole-resistant strains, including all strains with the TR34/L98H allele from India, The
Netherlands, the United Kingdom, and the United States, and clade B (83%) consisted of
isolates without this marker mainly from the United States. The TR34/L98H polymorphism
was shared among azole-resistant A. fumigatus strains from India, The Netherlands, the
United Kingdom, and the United States, suggesting the common origin of this resist-
ance mechanism. Six percent of azole-resistant A. fumigatus isolates from the United
States with the TR34 resistance marker had a mixture of clade A and clade B alleles, sugges-
tive of recombination. Additionally, the presence of equal proportions of both mating types
further suggests the ongoing presence of recombination. This study demonstrates the
genetic background for the emergence of azole resistance in the United States, support-
ing a single introduction and subsequent propagation, possibly through recombination of
environmentally driven resistance mutations.

IMPORTANCE Aspergillus fumigatus is one of the most common causes of invasive
mold infections in patients with immune deficiencies and has also been reported in
patients with severe influenza and severe acute respiratory syndrome coronavirus 2
(SARs-CoV-2). Triazole drugs are the first line of therapy for this infection; however,
their efficacy has been compromised by the emergence of azole resistance in A.
fumigatus, which was proposed to be selected for by exposure to azole fungicides in
the environment [P. E. Verweij, E. Snelders, G. H. J. Kema, E. Mellado, et al., Lancet
Infect Dis 9:789–795, 2009, https://doi.org/10.1016/S1473-3099(09)70265-8]. Isolates
with environmentally driven resistance mutations, TR34/L98H (TR34) and TR46/Y121F/
T289A (TR46), have been reported worldwide. Here, we used genomic analysis of
a large sample of resistant and susceptible A. fumigatus isolates to demonstrate
a single introduction of TR34 in the United States and suggest its ability to spread into
the susceptible population is through recombination between resistant and susceptible
isolates.
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A spergillus fumigatus is a globally distributed environmental fungus and the pri-
mary cause of aspergillosis, a serious and often fatal infection that mainly affects

patients with impaired immune systems or lung function but can also occur in people
without these underlying conditions (1, 2). Recent studies demonstrate that invasive
pulmonary aspergillosis is a lethal and frequently misdiagnosed complication of severe
influenza and severe acute respiratory syndrome coronavirus 2 (SARs-CoV-2) infections
that can cause illness and death in previously healthy individuals (2–9). Medical azoles,
such as itraconazole, posaconazole, and voriconazole, are the first line of therapy
against aspergillosis. However, numerous clinical reports and surveillance studies docu-
ment the emergence of azole-resistant A. fumigatus (ARAf) over the past decade (10).

Azole-resistant A. fumigatus isolates are characterized by a wide variety of genomic
resistance mechanisms. However, the predominant azole resistance mechanism found
among ARAf isolates is one or more substitutions in the sterol 14a-demethylase gene
(cyp51A) involved in the biosynthesis of ergosterol, the main component of the fungal
cell membrane; medical azoles target the product of this gene. Numerous reports docu-
ment a variety of single nucleotide substitutions (SNPs) in the cyp51A gene that arise in
patients that undergo prolonged antifungal therapy, such as patients with cystic fibrosis
and chronic pulmonary aspergillosis (11–13). In contrast, ARAf isolates with duplications
in the cyp51A gene promoter coupled with specific amino acid substitutions, known as
TR34/L98H and TR46/Y121F/T289A, are becoming widespread in the environment and are
frequently isolated from patients without previous exposure to antifungal drugs (14–19).
Clinical ARAf isolates harboring these environmentally derived mutations are emerging
as the predominant cause of resistance in patients without azole exposure (20).

It is now widely accepted that the emergence of TR34/L98H and TR46/Y121F/T289A
substitutions in A. fumigatus is associated with selection pressure from azole fungicides
that target the cyp51A gene product. In recent years, the use of these fungicides in
crop agriculture in the United States has increased; therefore, it is not surprising that
reports of ARAf isolates in patients and the environment harboring these substitutions
has also increased (20, 21). The presence of clinical or environmental ARAf with TR34/
L98H and TR46/Y121F/T289A substitutions has now been documented on six conti-
nents (14, 17, 22–26). Up to 15% of clinical isolates in Europe carry these substitutions,
which dramatically decrease treatment options for patients infected with ARAf strains
(27, 28). Recent genomic analysis demonstrated that azole-resistant isolates from
patients and the environment are genetically related (29).

Although still uncommon in the United States, ARAf with environmentally derived
substitutions in cyp51A have emerged in at least 3 states (30). While the initial survey
of 1,026 A. fumigatus isolates conducted by the CDC from 2011 to 2013 did not identify
isolates with TR34/L98H or TR46/Y121F/T289A substitutions, subsequent surveillance
reported the emergence of these polymorphisms among clinical and environmental
ARAf isolates in the United States (15, 31–35). However, it remains unknown whether
isolates with these mutations were introduced into the United States or emerged inde-
pendently. To address this question and to gain deeper insight into the genetic diver-
sity and the emergence of ARAf isolates in the United States, we applied whole-ge-
nome sequencing on a subset of A. fumigatus isolates from a collection of 1,736 clinical
and environmental isolates from various regions in the United States (15, 31). The aim
was to (i) characterize the genetic relationship among ARAf isolates from the United
States and global isolates, (ii) identify the genetic substitutions in the cyp51A gene that
may influence antifungal susceptibility, and (iii) evaluate the extent of genetic recombi-
nation in the A. fumigatus population to test the hypothesis that recombination may
have contributed to the distribution of the TR34/L98H allele in the United States.

RESULTS
Azole resistance and substitutions in cyp51A. A total of 179 A. fumigatus isolates

from 36 states were included in the analysis (see Table S1 in the supplemental mate-
rial). This sample included (i) 164 representative clinical isolates selected from 1,736
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A. fumigatus isolates submitted to the CDC as part of the ongoing passive surveillance
for azole resistance from 2015 to 2017, (ii) 13 previously reported environmental iso-
lates from a peanut farm in the state of Georgia, and (iii) two historical type isolates
from the CDC strain collection (15). We included all isolates with elevated MICs to itra-
conazole and voriconazole available at the time as well as susceptible isolates from
seven geographic areas in the United States (West, Midwest, Mountain, Central,
Northeast, Mid-Atlantic, and Southeast) (Fig. 1). In addition, publicly available genomes
of 18 isolates from The Netherlands, India, and the United Kingdom were included for
comparison. Of the 179 U.S. samples, 46 (26%, 33 clinical and all 13 environmental)
were deemed resistant to triazoles using an MIC cutoff value of 2mg/ml for either itra-
conazole or voriconazole (Table S1).

To investigate the potential mechanisms of resistance, we downloaded cyp51A
sequences and searched for nonsynonymous substitutions in this region. Forty-four
isolates (25%) had nonsynonymous cyp51A substitutions, three of which, G448S, TR34/L98H,
and TR34/L98H/S297T/F495I, are known to confer resistance to one or more triazole (Table 1;
Table S1). Three clinical isolates with TR34/L98H substitution were identified in the

FIG 1 A. fumigatus isolates in the United States. Azole-resistant and -susceptible Aspergillus fumigatus
isolates sampled from 7 Antimicrobial Resistance Laboratory Network (ARLN) regions in the United
States. The total number of isolates and the number of resistant isolates are represented by circles
and pie pieces, respectively.

TABLE 1 cyp51A substitutions and in vitro antifungal susceptibility ranges of A. fumigatus
isolates from the United States

cyp51A substitution(s) No. of isolates Origin type

MIC range (mg/ml)

Itraconazole Voriconazole
A9T 4 Clinical 0.5 to 1.5 0.38 to 1
D262Y 1 Clinical 8 2
F46Y/M172V/N248K/D255E/E427K 8 Both 0.19 to.16 0.094 to 4
G254V 1 Environmental .16 4
G448S 2 Clinical 16 8
I242V 15 Both 0.25 to.16 0.25 to 2
N248K 1 Clinical 1 0.25
P216L 1 Clinical .32 0.047
TR34/L98H 14 Clinical 4 to 16 0.5 to 2
TR34/L98H/S297T/F495I 10 Both 8 to.16 0.25 to 4
Wild type 124 Both 0 to 2 0 to 1
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Mid-Atlantic region. In addition, eight isolates with TR34/L98H/S297T/F495I were
identified: two clinical (one from the Mid-Atlantic region one from the West), and
six environmental isolates from a peanut farm in the Southeast. Other substitutions in
cyp51A were also identified, but they were present in both resistant and susceptible isolates
and were not linked to resistance (Table 1). An identical wild-type cyp51A allele was found in
135 isolates; of those, 120 were susceptible and 15 were resistant to azoles (Table S1).
Additionally, we also searched for variants within the 3-hydroxy-3-methyl-glutaryl-coenzyme
A (HMG-CoA) reductase-encoding gene, hmg1: all sequences were wild type.

Phylogenetic analysis using the neighbor-joining algorithm showed little genetic
variation in the cyp51A locus, a total of 27 SNPs were identified in a 2,049-bp region.
All sequences from ARAf isolates with the TR34/L98H substitution from U.S. and non-U.
S. isolates formed a single monophyletic clade on the phylogenetic tree (see Fig. S1).

Genetic diversity of A. fumigatus isolates.We performed whole-genome sequenc-
ing to investigate genetic diversity among isolates. All genomes had greater than
100� sequencing coverage and mapped to .95% of the publicly available reference
genome AF293 (Table S1). Genomes representing the United States and the non-U.S.
genomes shared a total of 228,546 SNPs. Phylogenetic analysis using the neighbor-
joining algorithm showed the presence of two major clades (Fig. 2). Clade B repre-
sented azole-susceptible and -resistant isolates without the TR34/L98H resistance
marker (N=164 [83%]); resistant isolates belonging to this clade were geographically
spread across the United States and can be further divided into two subclades. Clade A
comprised 24 (12%) isolates with the TR34/L98H resistance marker from the United
States, India, The Netherlands, and United Kingdom as well as 9 isolates without this
marker from the United States, The Netherlands, and United Kingdom (Fig. 2). Notably,
7 of the 18 U.S. isolates clustering with clade A were located on the long branches at

FIG 2 A. fumigatus triazole resistance. Phylogenomic analysis, using the neighbor-joining (NJ)
algorithm, of azole-resistant and -susceptible isolates from the United States, the United Kingdom,
India, and The Netherlands suggests the present of two clades. Clade A consists mainly of azole-
resistant A. fumigatus isolates carrying the TR34/L98H resistance marker from all geographic areas.
Clade B consists of azole-resistant and -susceptible A. fumigatus isolates carrying non-TR34/L98H and
wild-type alleles mainly from the United States.
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the base of clade A, suggestive of their intermediate position between the two clades
(Fig. 2). Six environmental isolates with TR34/L98H/S297T/F495I from a peanut farm in
Georgia were genetically related and likely came from a clonal population.

Population structure of A. fumigatus. To explore the genetic relationships among
isolates, we performed principal-component analysis. Analysis of the first two principal
components, representing the majority of the variation (77.6% of the total variance) in
this data set, demonstrated the presence of two populations, A and B, that corre-
sponded to the A and B clades on the phylogenetic tree; in addition, 14 isolates were
located between the two populations (Fig. 2 and 3) (17). A collection of globally repre-
sented A. fumigatus isolates harboring the TR34/L98H resistance marker clustered along
the first principal component, capturing much of the uniqueness in this data set (62%
variation) (Fig. 3). The majority of U.S. and non-U.S. isolates with the TR34/L98H resist-
ance marker were found along this axis (population A). Isolates mainly representing az-
ole-susceptible and ARAf isolates without the TR34/L98H marker clustered along the
second principal component (population B) (Fig. 3). Less genomic variation was
observed among A. fumigatus isolates within the United States (15.6%); however, two
subpopulations within population B which correspond to the two subclades in clade B
can be differentiated. In addition, 3 genotypes occupied an intermediate position
between the two populations (Fig. 3).

We used ADMIXTURE to further investigate the population structure and assess the
extent of genetic recombination between A and B populations as well as between iso-
lates with and without the TR34/L98H resistance marker (36). When criteria were set to
two populations (K = 2), ADMIXTURE assigned 164 (83%) isolates from the United

FIG 3 Global diversity of A. fumigatus isolates. Principal-component analysis indicated that most A.
fumigatus isolates from the United States cluster can be found along the second principal component
separately from non-U.S. A. fumigatus isolates. Azole-resistant A. fumigatus isolates without the TR34/
L98H resistance marker and isolates carrying the wild-type allele can also be found along this axis
(population B). A subset of A. fumigatus isolates harboring the TR34/L98H resistance marker from
India, Netherlands, United States, and United Kingdom clustered along the first principal component
(population A). An intermediate population of U.S. azole-resistant A. fumigatus isolates with the TR34/
L98H resistance marker was observed (red triangles).
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States to population B, while isolates with TR34/L98H markers from India, The Netherlands,
and the United Kingdom were assigned to population A. In addition, six isolates (18%), rep-
resenting the Midwest, Mountain, Southeast, and West regions of the United States were
also assigned to population A (Fig. 4). Furthermore, 12 (6%) isolates from the United States,
including those with the TR34/L98H markers, had a mixture of population A and population
B alleles, indicative of recombination between the populations. Notably, all isolates with the
TR34/L98H resistance marker shared more than 50% of their alleles with the isolates from
population A, which suggests they may be a product of recombination between the two
populations (Fig. 4). Similar results were observed when the ADMIXTURE criteria were set to
3 populations (K=3) (see Fig. S2), in which case, the majority of isolates from the United
States contained a mixture of alleles from two subpopulations corresponding to the two
subclades within the B clade on the phylogenetic tree, while isolates with TR34/L98H marker
were assigned to population A and possessed more than 50% of their alleles with the iso-
lates from population A. Although a K value of .3 was not supported by principal-compo-
nent analysis (PCA) or phylogenetic analysis, ADMIXTURE results for K values of 4 to 10 are
shown in Fig. S3.

Distribution of mating types. Aspergillus fumigatus isolates carrying a mixture of
alleles from the two different populations, which suggests the presence of recombina-
tion and sexual reproduction. To further test whether A. fumigatus in the United States
is capable of sexual reproduction, we mined genome assemblies for mat1-1 and mat1-
2 genes. The mat1-1 gene was present in 55% of genomes, while the mat1-2 gene was
found in 45% of A. fumigatus genomes (Fig. 4; see also Fig. S4). While the mat1-2 gene
was more frequent among ARAf isolates, the difference was not significant (P . 0.05).
This analysis demonstrates a nearly equal proportion of both mating types present in
this sample and allele sharing between different mating types (Fig. 4).

DISCUSSION

The environmentally associated polymorphism TR34/L98H occurs globally but only
recently emerged in the United States among clinical and environmental ARAf. Azole
resistance in A. fumigatus is primarily linked to substitutions in the cyp51A gene. Of the
46 resistant isolates from the United States in our collection, nearly two-thirds had
nonsynonymous substitutions in the cyp51A gene, three of which, including the

FIG 4 Population structure of A. fumigatus isolates. ADMIXTURE analysis (K = 2) identified two populations of A.
fumigatus isolates. A. fumigatus resistant isolates with TR34/L98H resistance marker from different areas of the
United States share alleles with A. fumigatus isolates from India, The Netherlands, and United Kingdom. Most A.
fumigatus isolates without the TR34/L98H were widespread across multiple regions of the United States and
shared less than 50% of their alleles with non-U.S. isolates. Azole resistant A. fumigatus isolates with the TR34/L98H
carrying the mat1-2 idiomorph were commonly seen in U.S. isolates, while mat1-1 was seen in non-U.S. isolates.
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environmentally derived TR34/L98H mutation, are known to cause resistance. Other
substitutions in cyp51A were also observed in both resistant and susceptible isolates;
however, their role in conferring resistance to azoles requires additional investigation.
In addition, we identified 16 resistant isolates with a wild-type copy of cyp51A, indicat-
ing the presence of other mechanisms of resistance in the U.S. population of A. fumiga-
tus. No isolates with TR46/Y121F/T289A resistance polymorphisms were identified in
our collection, although detection of isolates with these alleles in the United States
was reported by others (33, 34).

Recent studies utilizing high-resolution whole-genome sequencing and microsatel-
lite typing have identified two genetically distinct populations of A. fumigatus (17, 19,
29, 34). These studies indicate that most ARAf isolates harboring TR34/L98H form a sin-
gle clade that is genetically distinct from other clades and includes isolates with other
resistance mechanisms and wild-type genotypes. Consistent with these observations,
phylogenetic analysis using whole-genome sequencing data and PCA identified the
presence of two major populations in the United States, which, according to the no-
menclature used by Sewell et al., were designated clade A and clade B (17).

Phylogenetic analysis demonstrated 83% of U.S. isolates clustered with clade B, all
of which were either susceptible to azoles or had other mechanisms of azole resist-
ance; no isolates with the TR34/L98H marker were detected in this population.
Conversely, all U.S. isolates with the TR34/L98H marker clustered with clade A; however,
most of them occupied an intermediate position between the two populations on the
PCA plot and were placed on long branches at the base of clade A that suggested that
they might have been products of recombination between the two populations.
However, the main limitation of these analyses is that neither PCA nor phylogenetic
analysis considers a possibility of recombination between isolates.

We used ADMIXTURE that considers recombination and estimates the contributions
of alleles from different populations in a recombining population (36). This analysis
confirmed that azole-resistant isolates with the TR34/L98H resistance marker from The
Netherlands, India, and the United Kingdom belonged to population A. In addition,
two isolates from the United States, one with TR34/L98H from the West and another
susceptible isolate from the Midwest, possessed 100% of the alleles assigned to popu-
lation A. Furthermore, 7% of the isolates from the United States contained a mixture of
alleles from both populations, and all U.S. isolates with the TR34/L98H marker had at
least 50% of the alleles from population A, suggesting ongoing recombination
between the populations and a possible spread of TR34/L98H into population B in the
United States (Fig. 3). Sexual reproduction was previously reported in A. fumigatus
(37–40). Our analysis shows the nearly 1:1 distribution of the mating types in our sam-
ple that is consistent with a recombining population. Isolates with both mating types
were identified among TR34/L98H strains in the United States.

To further investigate the origin of the TR34/L98H marker in the United States, we
interrogated cyp51A gene genealogy, a much smaller region that is less likely to be
affected by recombination than the entire genome. Unfortunately, only a small num-
ber of single nucleotide polymorphisms were detected in this locus, limiting the extent
of phylogenetic inference that could be conducted with this locus. However, these lim-
ited data are consistent with a single monophyletic origin of TR34/L98H sequences.
Interestingly, isolates with TR34/L98H/S297T/F495I were closely related to TR34/L98H
sequences. Consistent with phylogenetic analysis, isolates with this marker also formed
a separate phylogenetic subgroup on the genome phylogeny within clade A and con-
sisted mainly of isolates from the United States, which was indicative of the genetic
relatedness among these isolates.

Because of the environmental occurrence and the rapid spread in Europe and Asia,
the emergence of TR34/L98H and TR46/Y121F/T289A mechanisms of resistance is a seri-
ous concern to public health. One of the major questions about the emergence of
these isolates in the environment is whether these markers can arise independently in
multiple populations or whether these substitutions have arisen once and are
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spreading through migration and recombination. In addition to an academic interest,
the answer to this question has important public health implications. Although they
do not provide direct proof, the combined results of PCA, ADMIXTURE, whole-genome,
and single-locus phylogenetic analysis are consistent with the hypothesis of a single
introduction of the TR34/L98H mutations in population A and the ongoing spread of
this marker throughout clade A possibly through recombination. Since the majority of
the U.S. isolates of A. fumigatus are represented in population B, the current low preva-
lence of the TR34/L98H mutations among the U.S. isolates is not surprising. However,
the ability of isolates from two populations to recombine is suggestive of future spread
of this mutation among U.S. A. fumigatus populations.

Our results demonstrate that isolates with this resistance mechanism have been
introduced into the United States (21). The use of azole antifungals in agriculture in
the United States is rapidly increasing; therefore, the proportion of resistance isolates
in the environment and clinics is also expected to increase, underscoring the impor-
tance of public health, environmental surveillance, and the development of prevention
measures (21). Therefore, the CDC and AR Laboratory network have launched surveil-
lance for ARAf in the United States (https://www.cdc.gov/drugresistance/laboratories/
AR-lab-network-testing-details.html).

MATERIALS ANDMETHODS
Isolates. Species identification and antifungal susceptibility testing were previously reported on a

combined collection of 1,736 clinical and environmental isolates in the United States (15, 31). A total of
179 clinical isolates, 46 azole resistant and 133 randomly selected azole susceptible, collected in 2015 to
2017 from 7 geographic areas (36 states) were included (see Table S1 in the supplemental material); the
origin of the isolates was assigned based on the submitter address. Thirteen azole-resistant environmen-
tal isolates were also included. Two historical isolates, which later were identified as different aliquots of
the same NRRL 163 (ATCC 1022) strain, were obtained from the Mycotic Diseases culture collection,
Centers for Disease Control and Prevention, Atlanta, Georgia.

Growth, DNA extraction, and whole-genome sequencing. All isolates were grown on Sabouraud
dextrose agar (SDA) slants at 37°C for 24h; conidia were harvested and preserved in 20% Tween 80-sterile
water. Conidial suspensions were serially diluted; 1 ml of the suspension was placed in a 25-ml canonical
tube containing yeast-peptone-dextrose (YPD) broth. This mixture was grown for 12 to 18h in a 37°C centrif-
ugal shaker at 300� g. Fungal hyphae were transferred to a 2-ml centrifuge tube and spun at 13,000� g to
remove residual broth. For DNA extraction, a Zymo research fungal/bacterial miniprep kit (Zymo Research,
USA) coupled with a Zymo research large-fragment DNA recovery kit was used per manufacturer’s guide-
lines. Genomic library preparation and sequencing were performed as previously described (41).

Gene analysis. All sequence data were assembled using default parameters in SPAdes version 3.9
(42). Assemblies were evaluated using QUAST version 2.3 (43). Nucleotide BLAST databases were gener-
ated using the cyp51A gene (accession AF338569) and mating type genes mat1-1 and mat1-2 (44). De
novo genome assemblies were compared to the cy51A gene using the blastn algorithm of BLAST1 (45).
This process was repeated for the mating type genes. Genomic regions that covered the entire length of
reference sequences and produced greater the 98% sequence similarity were designated that particular
gene. Genes were analyzed using the MUSCLE algorithm in MEGA version 7, and neighbor-joining trees
were plotted using iTOL and Microreact (46–48).

Variant calling and phylogenetic analysis. Raw Illumina reads from U.S. and non-U.S. Aspergillus fumi-
gatus genomes (BioProject PRJEB8623) were evaluated for quality using FastQC version 0.11.2 (49). All
sequence data were mapped to AF293 (GCF_000002655.1) using BWA version 0.7.7 (50). Postalignment proc-
essing was performed using SAMtools version 1.7 and Picard tools version 2.5 (51). Single nucleotide polymor-
phisms were identified using the Genome Analysis Toolkit Haplotype Caller (GATK) version 4.0 (52). Variant fil-
tering was performed by removing variants according to extracted values from Quality Depth (QD, 2) Fisher
Strand (FS. 50), Strand Odds Ratio (SOR, 3), Mapping Quality (MQ, 50), MappingQualityRankSum (210.5
, MQ . 10.5), and ReadPosRankSum (25 , ReadPosRankSum . 5). Filtered variants were converted to al-
lele sharing distances in TASSLE version 5.2.1.6 (53). Allele sharing distance is defined as 1 2 identity by state
(IBS), where IBS is defined as the probability of drawing the same allele from two different individuals. The
neighbor-joining algorithm, as implemented in MEGA-CC, was used to construct an unrooted phylogenetic
tree and visualized with the Interactive Tree Of Life (iTOL) and Microreact (46–48).

Population analysis. Pairwise average nucleotide identities were estimated using a publicly avail-
able script (54). Principal-component analysis for the first two components was performed with resulting
pairwise distance matrix using the prcomp function in the R programming language. To evaluate the
structure of A. fumigatus isolates, an unsupervised analysis was executed for a K of 2 to a K of 10 popula-
tions in ADMIXTURE (36). All graphs shown in this paper were plotted using the ggplot2 library in R.

Data availability. All raw Illumina reads in this study have been submitted to NCBI under BioProject
accession number PRJNA632561.
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