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Foodborne pathogens are a major public health burden in the United States, leading

to 9.4 million illnesses annually. Since 1996, a national laboratory-based surveillance

program, PulseNet, has used molecular subtyping and serotyping methods with the

aim to reduce the burden of foodborne illness through early detection of emerging

outbreaks. PulseNet affiliated laboratories have used pulsed-field gel electrophoresis

(PFGE) and immunoassays to subtype and serotype bacterial isolates.Widespread use of

serotyping and PFGE for foodborne illness surveillance over the years has resulted in the

accumulation of a wealth of routine surveillance and outbreak epidemiological data. This

valuable source of data has been used to understand seasonal frequency, geographic

distribution, demographic information, exposure information, disease severity, and

source of foodborne isolates. In 2019, PulseNet adopted whole genome sequencing

(WGS) at a national scale to replace PFGE with higher-resolution methods such as

the core genome multilocus sequence typing. Consequently, PulseNet’s recent shift

to genome-based subtyping methods has rendered the vast collection of historic

surveillance data associated with serogroups and PFGE patterns potentially unusable.

The goal of this study was to develop a bioinformatics method to associate the

WGS data that are currently used by PulseNet for bacterial pathogen subtyping to

previously characterized serogroup and PFGE patterns. Previous efforts to associate

WGS to PFGE patterns relied on predicting DNA molecular weight based on restriction

site analysis. However, these approaches failed owing to the non-uniform usage of

genomic restriction sites by PFGE restriction enzymes. We developed a machine learning

approach to classify isolates to their most probable serogroup and PFGE pattern,

based on comparisons of genomic k-mer signatures. We applied our WGS classification

method to 5,970 Shiga toxin-producing Escherichia coli (STEC) isolates collected as

part of PulseNet’s routine foodborne surveillance activities between 2003 and 2018. Our

machine learning classifier is able to associate STEC WGS to higher-level serogroups

with very high accuracy and lower-level PFGE patterns with somewhat lower accuracy.
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Taken together, these classifications support the ability of public health investigators to

associate currently generatedWGS data with historical epidemiological knowledge linked

to serogroups and PFGE patterns in support of outbreak surveillance for food safety and

public health.

Keywords: foodborne surveillance, PulseNet, machine learning, random forest, pulsed-field gel electrophoresis

(PFGE)

INTRODUCTION

In the United States, foodborne pathogens are responsible for an
estimated 9.4 million illnesses each year, leading to over 55,000
hospitalizations and ∼1,300 deaths (Scallan et al., 2011). Shiga
toxin-producing Escherichia coli (STEC) alone, is estimated to
cause 265,000 infections per year (Scallan et al., 2011) and is
known to cause a range of symptoms from mild gastroenteritis
and diarrhea to severe symptoms such as bloody diarrhea and
hemolytic uremic syndrome (HUS) (Mead and Griffin, 1998).

Rapid identification and characterization of the pathogens
causing illness are essential for an effective epidemiological
response. Molecular subtyping and serotyping methodologies
have been used for this purpose since the early 1980s (Holmberg
et al., 1984), aiding in epidemiological investigations of various
foodborne pathogens. In 1996, PulseNet was established as
the national molecular subtyping network for foodborne
disease surveillance, with the aim to reduce the burden of
foodborne illness through early detection of potential outbreaks
(Swaminathan et al., 2001). The PulseNet network of laboratories
consists of local, state and regional public health laboratories
across the US that perform routine phenotypic and molecular
characterization of clinical isolates. Routine laboratory testing
of STEC includes culture and phenotypic analysis for genus
and species confirmation (Zadik et al., 1993; Brooks et al.,
2005; Church et al., 2007), serotyping to determine O-and H-
antigens (Wang et al., 2003; DebRoy et al., 2011), molecular
detection of virulence genes via PCR (Paton and Paton,
1998; Belanger et al., 2002; Reischl et al., 2002; Gilmour
et al., 2009), and molecular subtyping by pulsed-field gel
electrophoresis (PFGE) (Cooper et al., 2006; Ribot et al., 2006).
Isolate information, test results, and images of PFGE banding
patterns are stored within a central national repository, the
PulseNet National Databases (Swaminathan et al., 2001), and
are actively used for routine surveillance. Widespread use of
serotyping and PFGE for foodborne illness surveillance over
many years has resulted in the accumulation of data from nearly
1 million isolates from routine surveillance, associated with
distinct serogroups and PFGE patterns, e.g., seasonal frequency,
geographic distribution, demographic information, exposure
information, disease severity, and common outbreak sources and
vehicles (Tolar et al., 2019). This collection of outbreak data
has provided investigators with links to more rapidly determine
contamination sources of similar outbreaks (Tolar et al., 2019).

Until recently, PFGE has been the gold standard subtyping
method for PulseNet and was the primary method used
for tracking foodborne pathogens (Ribot et al., 2019). PFGE
provides limited resolution but has several advantages such

as rapid identification and comparison of isolates (Graves
and Swaminathan, 2001). With the technological advances
and maturations, newer sequencing-based methodologies have
become more practical to implement in a large laboratory
network, such as PulseNet. In 2019, the PulseNet program
replaced PFGE with whole genome sequencing (WGS) based
methods as the new gold standard method for molecular
subtyping and routine surveillance (Ribot et al., 2019). WGS data
provides a much higher-resolution alternatives to PFGE, such
as single nucleotide variant-based (SNV) typing, core-genome
multilocus typing (cgMLST), and whole genome multilocus
typing (wgMLST) (Maiden et al., 2013). PulseNet now utilizes
cgMLST based subtyping for its epidemiological investigations.

TABLE 1 | Distribution of PFGE patterns and isolates from each O-antigen

serogroup analyzed in this study.

Pattern prefix O-serogroup # PFGE patterns # Isolates

EXH O157 112 2,647

EVC O26 72 754

EXW O103 62 725

EXD O111 49 603

EXK O121 19 518

EH2 O45 8 135

EXY O118 8 132

EXQ O186 8 116

ENM O145 10 98

EC5 O5 5 66

E71 O71 5 39

EZC O165 2 19

E98 O98 1 12

EMS Untypable 2 12

EKP O57 2 11

EVJ O77 1 10

EXB O8 1 10

EKK O91 1 9

E34 O134 1 7

EZ5 O181 1 7

E50 O50 1 6

EC1 O1 1 6

EHB O130 1 6

EXA O104 1 6

EZD O174 1 6

EHZ O156 1 5

EX1 O61 1 5
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While many of the molecular methodologies results can be
inferred through sequence comparisons and annotations, it has
been particularly challenging to identify the PFGE banding
pattern from WGS data. In silico prediction of banding patterns
has been shown to be incorrect due to factors not captured
within the sequence itself (e.g., DNA methylation and specific
electrophoresis conditions used for generating the restriction
profile). As such, the transition of PulseNet from PFGE to
WGS risks losing a wealth of valuable historical epidemiological
investigation data.

In this study, we describe a machine learning-based
computational method that infers PFGE banding patterns and
serogroup information from the WGS datasets. Being able to
associate WGS data with serogroup and PFGE patterns will
allow PulseNet, and other public health laboratories, to access
the accumulated epidemiological knowledge linked to historical
surveillance data and utilize them in future investigations.

MATERIALS AND METHODS

Isolate Genome Collection
STEC isolate genome data used in this study was collected
as part of routine subtyping and surveillance activities of
PulseNet and PulseNet affiliated laboratories between 2005
and 2018. Isolates were selected from the PulseNet STEC
National Database (Swaminathan et al., 2001) based on the
availability of their complete O-antigen serogroup and pulsed-
field gel electrophoresis (PFGE) test results, and whole genome
sequence data submitted to NCBI’s Sequence Read Archive
(SRA) (Supplementary Table 1). PFGE patterns represented by
<5 isolates were removed from the study. This resulted in a total
of 5,970 isolates, belonging to 27 O-antigen serogroups and 377
PFGE patterns (Table 1). The distribution of isolates and PFGE
patterns are shown in Figure 1 and Supplementary Figure 1.

Molecular Subtyping and Whole Genome
Sequencing
Isolates were previously characterized and sequenced
by PulseNet and PulseNet affiliated laboratories using a
standardized set of procedures (Atikson et al., 2012). Isolates
collected prior to 2012 were retroactively sequenced. Serotyping
for each isolate was performed by latex agglutination and/or
tube/slide agglutination (Atikson et al., 2012). PFGE was
performed on the isolates following PulseNet standard protocols
and resulting gel images were analyzed and submitted to
the PulseNet STEC National Database for foodborne disease
outbreak surveillance (Ribot et al., 2006).

Whole genome sequencing was performed using the Illumina
MiSeq and HiSeq 2,500 platforms. Qiagen Blood and Tissue
kits were used for DNA extractions and library preparation was
performed with Nextera XT (MiSeq) and NEB Next (HiSeq
2,500) using 2 x 250 bp chemistry. PulseNet’s minimum quality
thresholds for acceptance of raw sequence data include 40x
average read coverage, Q-score > 30 in each paired read set, and
an expected genome size of 5.0 Mbp. Raw sequence data quality
was assessed using the LYVE-SET (Katz et al., 2017) software
package. Isolates passing the quality thresholds were submitted
to NCBI’s SRA and were retrieved for this study using the SRA
Toolkit (https://github.com/ncbi/sra-tools).

Genomic Data Representation
Each isolate’s WGS data was represented as a k-mer
presence/absence matrix, with rows representing the isolate
(i.e., the instance) and columns representing the k-mers (i.e., the
features). Raw sequence reads were k-merized and hashed using
the open-source k-mer sketching library as implemented within
MASH (Ondov et al., 2016). Specifically, reads were k-merized
to 32 bp fragments. Any k-mer with <5 occurrences in either
orientation (forward or reverse) were filtered out as noise in
the data. The remaining k-mers were hashed using the hashing

FIGURE 1 | Dataset composition of 5,970 E. coli isolate whole genome sequences. (A) Serotype is designated by the O-antigen serogroup and 3-letter identifier

assigned by PulseNet (denoted in parentheses). The six most frequent E. coli O-antigen serogroups are highlighted. (B) PFGE pattern identifiers are prefixed by the

3-letter serotype. The six most frequent unique PFGE patterns are highlighted here. In total, 27 unique E. coli O-serogroups and 377 unique PFGE patterns are

present in the dataset used to train and test our classification model.
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FIGURE 2 | A schematic of the machine-learning approach used to train and

test a random forest classifier to predict the O-serogroup and PFGE pattern of

STEC genomes directly from raw sequence reads. A more detailed

representation for each model training step is shown in

Supplementary Figure 2 in the Supplementary Materials.

function as implemented within the MASH library (Ondov
et al., 2016). Hashed k-mer outputs were sorted, and the smallest
10,000 hash values (k-mers) were selected for each isolate. These
selected k-mers were merged across isolates to form the isolate
by k-mer matrix, which was used as the input for our machine
learning framework. This resulted in a 5,970 (isolates) x 254,464
(k-mers) large matrix.

Model Training Framework
We approached the PFGE pattern prediction problem
as a hierarchical two-level system (Figure 2 and
Supplementary Figure 2): serogroup prediction followed by
PFGE pattern prediction. Consequently, a single serogroup
prediction model and several serogroup-specific PFGE
prediction models were created. For each model, the
unimportant features were removed using feature selection
to (a) reduce the time and complexity for model training, and (b)
avoid overfitting of the models.

Feature selection procedure was applied on the isolate by k-
mer matrix to identify the minimal set of maximally informative
features. This procedure was applied independently for each
class, serogroup or PFGE pattern, as the informative features
in one class may differ from another. We adopted a stepwise
process to systemically evaluate feature sets of different sizes. The
procedure starts by creating an initial random forest model using
all 254,464 features across all isolates belonging to the specified
class (Strobl et al., 2008). Features are then ranked in descending

order of their Gini importance (Breiman, 2001). Feature sets with
increasing number of features are created iteratively, starting with
a set size of the 10 most important features and adding the next
10 most important features in each iteration. For each feature set,
5-fold cross validation (CV) accuracy is calculated as the number
of correctly predicted isolates/total number of isolates within the
class. Since the input to our model is short read sequence data,
it is possible that certain k-mers are not represented within an
isolate due to the stochasticity in the sequencing process. We
account for these stochastic factors within our machine learning
model by searching for feature sets where accuracy is high and
relatively stable when compared to neighboring feature sets.
More specifically, for each feature set evaluated in this step, we
compare the accuracy of our feature set with the neighboring
±15 feature sets (i.e., accuracy achieved by ±150 k-mers). If
the accuracy for the given feature set is ranked in the top
5% of its neighbor feature sets’ accuracy, the given feature is
deemed optimal.

The final models for each class were created by using a
random forest classifier as implemented in the scikit-learn
Python package (Pedregosa et al., 2011). The random forest
classifier was run with default parameters with two exceptions:
the number of estimators was set to 500 and a 5-fold CV was used
for evaluating the model performance.

Performance Evaluation
To evaluate the performance of our final models, we used a 5-
fold CV F1 accuracy. Given the small average number of isolates
per class, a CV based accuracy is a better measure of our model’s
robustness. F1 accuracy is calculated as below:

F1 = 2×
precision × recall

precision+ recall

=
True Positive

True Positive+ 0.5× (False Positive+ False Negative)

F1 accuracy accounts for the class imbalance and better captures
the model accuracy compared to traditional accuracy measures.
The 5-fold CV F1 accuracy was calculated for both serogroup
and PFGE pattern models. Overall classification performance
of our system was calculated as the ability of the system to
correctly predict both serogroup and the PFGE pattern. Random
accuracy was calculated by using a bootstrapping technique with
10-replicates. Specifically, isolates were randomly assigned to a
PFGE pattern and for each replicate, the number of correct
predictions (both serogroup and PFGE pattern) were calculated.
The final random accuracy was calculated as the macro-average
of all bootstrap results = total correct predictions/total number
of isolates.

For each isolate, we also recorded the probability of the top
five predictions at the serogroup and PFGE pattern levels. The
function predict_proba within the scikit-learn package was used
for calculating each class’ prediction probability.
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The diversity of PFGE patterns in our dataset was quantified
using Shannon’s entropy (Shannon, 1948):

Entropy = −

n∑

i=1

pi× log2 pi

where, i ranges from 1 to n PFGE patterns and pi is the frequency
of the PFGE pattern within any given serogroup.

Data and Model Availability
The isolate sequence read data analyzed here is publicly accessible
in NCBI’s SRA (Supplementary Table 1). The final models,
and the Python script for predicting the serogroup and PFGE
pattern from an isolate’s sequence read file (FASTQ) is available
here: https://github.com/jordanlab/pfgeBLAST.

Comparison With ECTyper and SRST2
Our method’s ability to perform serotyping was compared to two
other popular software for E. coli serotyping: ECTyper (https://
github.com/phac-nml/ecoli_serotyping; accessed on 8/30/2021)
and SRST2 (Inouye et al., 2014; Ingle et al., 2016). ECTyper
was run using the command: ecytper -i <read1 file>,<read2
file> -o <output>. We used the pre-built database supplied
by the ECTyper package. SRST2 was run using the command:
srst2 –input_pe <read1 file><read2 file> –output <output>
–gene_db <EcOH> –log. We used the EcOH database, as
recommended by the authors of SRST2. Accuracy for each

software was calculated as percent of predicted serotypes
matching the known serotype of the isolate.

Computational Environment
The experiments described in this study were performed on a
compute server provisioned with 24 processing cores, 64 GB of
RAM, and running Red Hat Linux operating system.

RESULTS

Serogroup and PFGE Pattern Distribution
We evaluated 5,970 STEC isolates collected in US as part of
the routine surveillance efforts of the PulseNet network of
public health laboratories since 1996. All STEC isolates were
characterized by (1) confirmation of genus and species
with phenotypic analysis, (2) O-antigen serotyping by
agglutination and (3) subtyping by PFGE. The results from
this characterization are captured in the 10-character code of
each isolate, which indicates the O-antigen serogroup (first three
characters), restriction enzyme (next three characters), and the
unique PFGE banding pattern (last four characters). The isolates
analyzed in this study are representative of the proportion of O-
antigen serogroups reported in the U.S.; the top 6 most frequent
O-antigen serogroups (in order) in this study are O157, O26,
O103, O111, O121, O45 (Figure 1A). As expected, the top six
most frequent PFGE patterns belong to serogroups O157 (EXH),
O121 (EXK) and O111 (EXD). All included PFGE patterns had
a minimum of five isolates (Supplementary Figure 1). Isolate

FIGURE 3 | Density plot representing the F1 accuracy achieved by varying number of features. F1 accuracy from 5-fold cross validation is iteratively computed starting

with 100 of the most important features determined by Gini importance and incremented by 10 features at each iteration. Each point represents the average F1
accuracy across each of the 27 serogroup classes. Kernel density estimation is calculated to highlight the abundance of similar, uninformative features where F1
accuracy provides diminishing returns.
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selection was limited by the availability of paired sequence data
and PFGE pattern information since PulseNet began using WGS
on select isolates in 2013 before it transitioned to WGS for all
STEC in 2019. Only a select number of historical isolates have
been retroactively sequenced for study. All isolate sequence data
is publicly available; however, each isolate’s test results were
acquired from the PulseNet STEC National Database.

Machine Learning Framework for Isolate
Characterization
To model the PFGE patterns within a machine learning
framework, we represented each isolate in an n-dimensional
k-mer space (Figure 2). Specifically, each isolate’s WGS reads
were fragmented to 32 bp k-mers and the resulting k-mers were
subsampled to 10,000 non-singleton k-mers per isolate. The k-
mers from all the isolates were compiled into a single k-mer
presence/absence matrix of size 5,970 (isolates) x 254,464 (k-
mers). This large matrix was used as the input for the machine
learning framework.

We approached the PFGE pattern prediction

problem as a hierarchical two-level prediction system
(Supplementary Figure 2): O-antigen serogroup and PFGE

pattern-level predictors. A random forest classification algorithm

was utilized for feature selection as well as for building the final

machine learning models. Even though the large feature space
for the input data (254,464 k-mers) is a reduced representation

of the full k-mer space, it is still too large for the classification

algorithms, leading to increased time and complexity for

model building as well as the potential to over fit the data,

producing less generalizable models. Hence, we employed a

feature selection procedure for computing the minimal set of

maximally informative features (see Materials and Methods).

The feature selection procedure was independently applied for
each class (i.e., serogroup and all PFGE patterns). Briefly, we
iteratively calculated the accuracy of increasingly larger feature
sets and identified the optimal feature set size where the accuracy
was high and relatively stable when compared to the neighboring
feature sets (Figure 3). We found that classification accuracy
increases steeply until a feature set size of ∼400 k-mers is
reached, after which the accuracy starts decreasing or flattening
out irrespective of how many k-mers are added to the model.
Overall, this procedure resulted in a set of smaller class-specific
matrices, with feature count ranging from 10 to 7,700 features
(Supplementary Table 2). The top-level serogroup model had
the greatest number of features (n= 7,700). The average number
of features across all classes (serogroup and PFGE pattern) was
302 (0.12% of the initial data).

The smaller class-specific matrices were used to build a total
of 28 models (one serogroup-level and 27 PFGE pattern-level),
using a random forest classification algorithm.

Model Performance
Our hierarchical two-level prediction system has an overall
classification accuracy of 78.1% (4,663 out of 5,970). The WGS-
to-serogroup classification is highly accurate; the serogroups of
98.5% of STEC genomes were accurately classified (5,881 out
5,970). WGS-to-PFGE pattern classification was less accurate;
78.9% of PFGE patterns were accurately classified (4,710 out
of 5,970). The accuracy of PFGE pattern classification is highly
dependent on the diversity of PFGE patterns found for any given

FIGURE 4 | Overall performance of PFGE classifier using final, two-step prediction model measured by F1 accuracy. (A) PFGE pattern prediction performance

measured by F1 accuracy across serotypes. Bubble size scales with number of isolates within a serotype while color shade darkens with number of unique PFGE

classes within a serotype. (B) Classification performance measured in F1 accuracy when using each model independently and combined. F1 accuracy of a classifier

using random guessing was calculated to demonstrate a baseline expected performance without training.
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FIGURE 5 | Probability of predicting the correct PFGE pattern within top 5

predictions.

serogroup. PFGE patterns from diverse serogroups, containing a
high number of unique patterns, showed far lower classification
accuracy than PFGE patterns from less diverse serogroups
(Figure 4 and Supplementary Figure 3). Nevertheless, given the
presence of 377 unique PFGE patterns in our dataset, and
considering the number of genomes corresponding to each
pattern, 78.1% accuracy is ∼34-times higher than could be
expected (2.3%) compared to purely random classification.

The performance of the PFGE pattern model can further
be improved from 78% to 94% by reporting the five most-
probable PFGE patterns predicted for any isolate (Figure 5
and Supplementary Figure 4). Since the serogroups with the
relatively lower accuracy are also the most diverse (on average
63 PFGE patterns per serogroup) and abundant (∼88% of total
isolates in the study), being able to know the five most likely
PFGE patterns is epidemiologically meaningful.

The full prediction runs on average in ∼10.27 seconds
per isolate genome with the k-mer representation taking ∼8.1
seconds and random forest classification taking∼2.16 seconds.

Serotyping Performance Comparison With
Other Methods
We compared the performance of our method’s serotyping ability
with other popularly used software: ECTyper (https://github.
com/phac-nml/ecoli_serotyping) and SRST2 (Inouye et al.,
2014; Ingle et al., 2016). For our dataset, ECTyper had an
accuracy of 72.7% and an average speed of 76.07 seconds
per isolate, while SRST2 yielded a higher accuracy of 90.9%
but with a slower average speed of 114.46 seconds per isolate
(Supplementary Figure 5).

DISCUSSIONS

Importance of and Challenges in Predicting
Serogroup and PFGE Patterns From WGS
Potential foodborne STEC outbreaks are initially discovered
by matching genetically related isolates collected as part of
the routine surveillance activities (Hedberg and Besser, 2006).

Historically, similarity between STEC isolates was determined
by using serotype and PFGE banding pattern information.
Serotyping entailed determination of the O-group by the O-
antigen on the cell surface and, if available, the H-type from
the flagellar H-antigen. PFGE yields distinct DNA restriction
patterns and has the discriminatory power to differentiate
highly similar isolates. Further, PulseNet’s highly optimized
PFGE protocols ensured maximum discriminatory power,
reproducibility, and comparability between isolates processed
at distinct laboratories (Ribot et al., 2006). In the PulseNet
National Database, PFGE banding patterns were procedurally
assigned PFGE pattern identifiers by visual comparison of PFGE
images. PFGE banding patterns matching an existing pattern
were assigned the same identifier, distinct PFGE banding patterns
were assigned unique identifiers.

Since PulseNet’s transition to WGS in 2019, PulseNet’s
primary subtyping method, PFGE, was succeeded by two gene-
by-gene typing approaches: cgMLST and wgMLST. The cgMLST
focusses on a subset of genes commonly found in >95% of the
genomes; wgMLST encompasses all genes observed within the
sequenced isolates (Maiden et al., 2013). cgMLST is shown to
offer sufficient discriminatory resolution for identifying closely
related genomes for outbreak surveillance while requiring a
smaller computational footprint than wgMLST. The use of
WGS-based analyses replaces several conventional laboratory
tests, improves detection accuracy, and reduces resource cost
by consolidating multiple conventional workflows into a single
rapid assay.

Although WGS datasets have been immensely useful in
advancing outbreak investigation science, being able to infer
historically used PFGE banding pattern information has
been immensely challenging. A wealth of isolate associated
information such as previously identified sources, vehicles or
seasonal trends, has been harder to utilize, risking loss of
valuable collection of data. While it is theoretically possible to
predict DNA fragment lengths and molecular weights from the
restriction enzyme (Bikandi et al., 2004) utilized by PulseNet, it
has been difficult to do so for a number of reasons: (1) limitation
of PFGE in resolving DNA fragments of the same size where
non-homologous DNA fragments appear as a single band (Davis
et al., 2003), (2) unpredictability of DNAmethylation sites where
restriction is prevented (Davis et al., 2003), (3) specific run
conditions established from PulseNet’s PFGE protocol, and (4)
subjectivity introduced by visual comparison of gel images. These
limitations make simplistic approaches for in silico digestion
of genomes incomparable to experimentally generated PFGE
banding patterns.

Leveraging WGS for Creating
High-Dimensional Models
More complex methodologies, such as machine learning
algorithms, are able to capture obscure patterns from large
collection of data, if such patterns exist. The availability of a
large paired WGS-PFGE dataset allows us to implement such
methodologies, enabling us to approach the problem in an
agnostic and data-driven manner.
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Gene-by-gene typing methodologies provide substantial
resolution for epidemiological investigation purposes,
but are poorly correlated with PFGE banding patterns
(Supplementary Figure 6). This can be attributed to the
reduction of the genomic problem (sequence-based information)
to a genetic problem (allele numbers) within the multilocus
sequence typing family of approaches. In other words, absence
of sequence information in the cgMLST calls likely prohibits
our machine learning approach from discovering informative
patterns. On the other hand, representing the whole genome
or the collection of genes within a machine learning amenable
manner for thousands of isolates is computationally prohibitive
and not practical. Hence, we proceeded to investigate the
association of shorter sequences (k-mers) with PFGE banding
patterns. k-mers have been shown to be sufficiently informative
short sequences used across a number of different applications
including genome assembly (Compeau et al., 2011), read-to-
genomemapping (Li and Durbin, 2009), taxonomic classification
(Nayfach et al., 2016; Wood et al., 2019), and multi-locus
sequence typing (Gupta et al., 2017; Espitia-Navarro et al., 2020).
Consequently, we represent our genomes as high-dimensional
k-mer presence/absence vectors and utilize these vectors within
a machine learning framework.

Despite the high-dimensional nature of our approach, it
is fast, scalable, and adds minimum overhead to the existing
data analysis processes at PulseNet. Further, our machine
learning classifier is able to associate STEC WGS to O-
antigen serogroups and PFGE patterns with high accuracy.
Taken together, these classifications support the ability of public
health investigators to associate currently generated WGS data
with historical epidemiological knowledge linked to STEC O-
antigen serogroups and PFGE patterns in support of outbreak
surveillance for food safety and public health.

Generalizable Approach for Building
Models for Organisms
PulseNet currently tracks seven bacterial organisms, including
STEC, each with a collection of historic PFGE pattern
information. Although, the results presented in this study
focus on STEC, we hope it serves as a proof-of-principle
that such methods can also work well for other organisms
of interest. This is especially timely, considering that other
genome-based methodologies, such as cgMLST, are still in early
development phases.

Limitations
Our current study has some outstanding challenges and
limitations. As with most database-based methodologies, the
accuracy and coverage of our method is dependent on

the number of genomes used to build the initial model.
Infrequently observed or sequenced PFGE patterns do not
have enough genome representation in our model and will be
incorrectly predicted. Similarly, any new PFGE pattern will be
predicted incorrectly.

The accuracy of our method is also tied to the noise in the
input data. PFGE banding patterns identifiers are susceptible to
a high-level of subjectivity as they were primarily assigned by
visually comparing band fragments. This subjectivity introduces
noise when building random forest models. We expect that
by sequencing additional genomic data and some manual re-
curation of the data will help us improve the current accuracy
of our methodology.
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