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Abstract

Genetic ancestry inference can be used to stratify patient cohorts and to model pharmacogenomic variation
within and between populations. We provide a detailed guide to genetic ancestry inference using genome-
wide genetic variant datasets, with an emphasis on two widely used techniques: principal components
analysis (PCA) and ADMIXTURE analysis. PCA can be used for patient stratification and categorical
ancestry inference, whereas ADMIXTURE is used to characterize genetic ancestry as a continuous variable.
Visualization methods are critical for the interpretation of genetic ancestry inference methods, and we
provide instructions for how the results of PCA and ADMIXTURE can be effectively visualized.

Key words Admixture, Genetic ancestry inference, Pharmacogenomics, Health disparities, Genetic
variants, Population-specific drug efficacy

1 Introduction

Pharmacogenomic variants that mediate patients’ response to med-
ications often show large allele frequency differences among popu-
lation groups [1, 2]. These allele frequency differences have
important implications for treatment decisions, with population-
specific effects observed for drug efficacy, dosage, and toxicity.
Indeed, there are numerous examples of racial and ethnic differ-
ences in drug response, many of which can be attributed to allele
frequency differences in pharmacogenomic variants [3-7]. It has
been observed that up to 20% of newly approved drugs show
distinct racial and ethnic response profiles, and differences of this
kind can lead to group-specific treatment recommendations issued
by the FDA [8].

Nevertheless, it should be stressed that race and ethnicity are
socially ascribed characteristics, based on shared origins, culture,
heritage, and social experiences. Race and ethnicity are not
biological categories and are therefore imprecise proxies for genetic
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diversity [9]. Genetic ancestry, on the other hand, is a characteristic
of the genome. Genetic ancestry measures individuals® bio-
geographical origins, based on correlated allele frequency differ-
ences among ancestral source populations [10]. Genetic ancestry
can be defined independently of the social dimensions of race and
ethnicity, and it can be characterized objectively and with precision,
as either a categorical or a continuous variable. Accordingly, phar-
macogenomic variation among populations is better modeled with
genetic ancestry as opposed to race and ethnicity.

The aim of this chapter is to provide a practical guide to genetic
ancestry inference for pharmacogenetic researchers who may wish
to stratify their study cohorts based on patterns of genetic diversity
rather than, or in addition to, the more commonly used social
categories of race and ethnicity. In light of the increasing availability
of large-sale genomic datasets, we focus on genetic ancestry infer-
ence methods that make use of genome-wide genetic variant data,
including whole-genome sequences, whole exome sequences, and
whole-genome genotypes. We provide detailed protocols for two
commonly used methods — principal components analysis (PCA)
and ADMIXTURE analysis — and we emphasize visualization meth-
ods given their importance for large-scale data analysis and inter-
pretation. PCA vyields a high-level overview of the patterns of
genetic diversity found in a genomic dataset and can be used to
delineate genetic ancestry categories [11]. ADMIXTURE can be
used to characterize genetic ancestry as a continuous variable,
providing fractional estimates of ancestry components for each
genomic sample [12].

2 Materials

2.1 Operating
Systems

In order to perform genetic ancestry inference, users will need
access to (1) a unix/linux operating system, (2) the Conda package
manager and environment management system, (3) program
installation files, (4) all necessary program dependencies, and
(5) appropriately formatted genomic variant data. We provide an
overview of the operating system, the package manger, and the
genomic data formats that are needed for both of the genetic
ancestry inference methods described here. We also provide details
on the installation of the R studio package, which can be used to
visualize the results of the genetic ancestry inference.

Scientific computing, including genetic ancestry inference, is gen-
erally conducted in the command line interface provided by unix/
linx operating systems. There are numerous unix/linux operating
systems available, many of which are provided free of charge. We
recommend the freely available RedHat or Ubuntu Linux
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operating systems, and all protocols described here can be success-
fully executed in one of those operating systems.

1. RedHat https: //ubuntu.com/download /desktop
2. Ubuntu https: //access.redhat.com/downloads

Installation and execution of scientific software packages often
requires a specific environment along with a number of dependen-
cies, i.e., other programs or libraries. Thus, environment specifica-
tion and dependency installation is a rate-limiting step for the use of
scientific software, including genetic ancestry inference packages.
Conda is a freely available software package and environment man-
agement system that allows users to install and update software
packages and their dependencies. Use of Conda can save a great
deal of time and effort, allowing users to focus on software execu-
tion without the need for source code compilation. It should be
noted that not all genetic ancestry inference software is made
available through Conda, users may have to install and compile
source files for some packages, but the tools described here can all
be installed from Conda.

1. Conda version 4.9.2 https: //repo.anaconda.com/miniconda/

The program PLINK v1.90b6.21 64-bit, which can be used for
PCA, is distributed through Conda.

1. https: //anaconda.org/sjnewhouse /plink

The program ADMIXTURE version 1.3.0 is distributed through
Conda.

1. https://anaconda.org/bioconda/admixture

There are numerous sources of genomic variant data, and users can
use their own appropriately formatted data to conduct the genetic
ancestry inference analyses described here. The 1000 Genomes
Project provides freely available human genomic variant data for
<2000 individuals from 26 worldwide populations 13. Data are
distributed in the variant call format (VCF) and can be downloaded
as individual chromosome files. We recommend using a single small
chromosome, e.g., chromosome 22, to get started with the analyses
described here. Whole-genome analyses can be performed by con-
catenating all chromosome-specific VCF files.

1. http://ftp.1000genomes.ebi.ac.uk/voll /ftp /data_col
lections /1000G_2504_high_coverage /working/phase3_
lifttover_nygc_dir/

(a) phase3.chr22.GRCh38.GT.crossmap.vcf.gz
(b) phase3.chr22.GRCh38.GT.crossmap.vctf.gz.tbi


https://ubuntu.com/download/desktop
https://access.redhat.com/downloads
https://repo.anaconda.com/miniconda/
https://anaconda.org/sjnewhouse/plink
https://anaconda.org/bioconda/admixture
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/phase3_liftover_nygc_dir/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/phase3_liftover_nygc_dir/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/phase3_liftover_nygc_dir/
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2.6 Genomic Sample
Information

2.7 Programming

The genetic ancestry inference protocols presented here entail the
analysis of a subset of samples from four populations from the 1000
Genomes Project. Users will need to use the metadata on the
population origins of the genomic variant samples in order to
extract samples from those four populations.

1. https: //www.internationalgenome.org/data-portal /sample
The R studio version 4.0.3 integrated development environment
(IDE) is used to visualize the results of genetic ancestry inference.

1. https: //www.rstudio.com/products/rstudio/download /
#download

3 Methods

3.1 Software
Installation

3.2 Download
Genomic Variant Data

3.3 Download
Genomic Sample
Information

3.4 Extract Samples
from the Four
Populations to Be
Analyzed

All of the necessary software listed in the Materials section should
be installed, starting with the RedHat or Ubuntu operating system
followed by the Conda package manager and environment man-
agement system. RedHat is often used for shared computer servers,
whereas Ubuntu is recommended for laptop or personal computer
use. Conda versions of individual programs can then be installed
using the links provided in the Materials section. Finally, the R
studio package for results visualization should be installed using
the link provided in the Materials section. Instructions for software
installation are provided in Notes 1—4.

Users can use their own genomic variant data as long as it is in the
appropriate variant call format (VCF) https: //samtools.github.io/
hts-specs/VCFEv4.1.pdf, or they can download human genome
variant data from the 1000 Genomes Project using the link
provided in the Materials section. See Note 5.

Metadata on the population origins of the genomic variants sam-
ples from the 1000 Genomes Project can be downloaded using the
link in the Materials section. See Note 6.

Colombian in Medellin, Colombia [CLM], Iberian Populations in
Spain [IBS], Peruvian in Lima Peru [PEL], and Yoruba in Ibadan,
Nigeria [YRI]. Please note that the “$” symbol refers to the start of
the Linux command line, after which the commands should be
entered and executed as shown.
1. Extract sample identifiers for the four populations.

$ cut -f1,4 igsr_samples.tsv | grep -¢ "CLM" -¢ "IBS" -e¢

"PEL" -e¢ "YRI" > samplesToPops.tsv


https://www.internationalgenome.org/data-portal/sample
https://www.rstudio.com/products/rstudio/download/#download
https://www.rstudio.com/products/rstudio/download/#download
https://samtools.github.io/hts-specs/VCFv4.1.pdf
https://samtools.github.io/hts-specs/VCFv4.1.pdf
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2. Extract the genomic variant data corresponding to the sample
identifiers for the four populations.

$ cut -f1 samplesToPops.tsv > sampleIDs.tsv

$ plink --vef phase3.chr22.GRCh38.GT.crossmap.vef.gz --
keep-allele-order --keep-fam sampleIDs.tsv --make-bed --
out 1000Genomes.4Pops. Chr22.GRCh38

The last command creates the three PLINK format files, which
are needed to run PCA in PLINK:
1000Genomes.4Pops.Chr22.GRCh38.bed
1000Genomes.4Pops.Chr22.GRCh38.bim
1000Genomes.4Pops.Chr22.GRCh38.fam

Perform linkage disequilibrium (LD) pruning to yield a reduced set
of unlinked genetic variants. See Note 7.

1. Filter variants with minor allele frequency of 1% and perform
LD pruning.

$ plink --bfile 1000Genomes.4Pops.Chr22.GRCh38 --keep-allele-
order --maf (.01 --indep-pairwise 500 5 0.25 --out 1000Gen-
omes.4Pops.Chr22.GRCh38

This command creates the file: 1000Genomes.4Pops.Chr22.
GRCh38.prune.in with 20,936 variants.

$ plink --bfile 1000Genomes.4Pops.Chr22.GRCh38 --keep-allele-
order --extract 1000Genomes.4Pops.Chr22.GRCh38.prune.
in --make-bed --out 1000Genomes.4Pops.Chr22.GRCh38.
Pruned

This command creates the files:

1000Genomes.4Pops.Chr22.GRCh38.Pruned.bed
1000Genomes.4Pops.Chr22.GRCh38.Pruned.bim
1000Genomes.4Pops.Chr22.GRCh38.Pruned.fam

Run PCA analysis to characterize the genetic relationships among
the samples (see Fig. 1). See Note 8.

$ plink --bfile 1000Genomes.4Pops.Chr22.GRCh38.Pruned --pca
--out 1000Genomes.4Pops.Chr22.GRCh38.Pruned.PCA

This command creates the PCA results files, which will be
subsequently visualized in R studio:

1000Genomes.4Pops.Chr22.GRCh38.Pruned.PCA.eigenval
1000Genomes.4Pops.Chr22.GRCh38.Pruned.PCA.eigenvec
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Fig. 1 Principal components analysis (PCA) of four human populations: Colombia (CLM — green), Peru (PEL —
red), Spain (IBS — orange), Yoruba (YRI — blue). The first two principal components (PCs) are shown

3.7 Visualize PCA Visualize PCA results in R studio.

Results

1. Install R packages needed for visualization.
install.packages("dplyr")
install.packages("ggplot2")
install.packages("reshape2")

2. Configure and import the libraries.

options(scipen=100, digits=3)

library(’dplyr’)

library(’ggplot2’)

3. Read and process the eigenvector PCA output file and extract

the top two PCs.

eigenvec <- read.table(’1000Genomes.4Pops.Chr22.
GRCh38.Pruned.PCA.eigenvec’, header = TRUE, sep =
)

rownames(eigenvec) <- eigenvec[,2 ]

eigenvec <- eigenvec|[,3:ncol(eigenvec)]
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colnames(eigenvec) <- paste(’PC’, ¢(1:20), sep =)
cigenvec$IndividuallD = row.names(eigenvec)
eigenvec = eigenvec[c(" IndividualID", "PC1", "PC2")]

row.names(eigenvec) <- NULL

4. Visually inspect the eigenvector file.
head(eigenvec)
IndividuallD PC1 PC2
1 HGO1113 0.0336 —0.00201
2 HGO01119 0.0384 0.02310
3 HGO01121 0.0371 0.02146
4 HGO01122 0.0277 0.02503
5 HGO01124 0.0283 —0.02970
6 HGO01125 0.0293 —0.03324
5. Merge the results with population group data.
individualToPopGroupData = read.table(’samplesToPops.
tsv’, col.names = ¢("IndividualID", "PopGroup"), header
= FALSE)
combinedPCsPopGroups = join(eigenvec,
individualToPopGroupData)
head(combined PCsPopGroups)
IndividuallD PC1 PC2 PopGroup
1 HGO01113 0.0336 —0.00201 CLM
2 HGO01119 0.0384 0.02310 CLM
3 HGO01121 0.0371 0.02146 CLM
4 HGO01122 0.0277 0.02503 CLM
5 HGO01124 0.0283 ~0.02970 CLM
6 HGO01125 0.0293 —0.03324 CLM
6. Define population colors.
colors <- ¢("CLM" = "green", "IBS" = "orange", "PEL" =
"red", "YRI" = "blue",)
7. Plot the PCA results for the top two PCs.

options(repr.plot.width=12, repr.plot.height=12)

ggplot(combinedPCsPopGroups,  aes(x=PCl,  y=PC2,
fill=PopGroup)) + scale_fill_manual(values=colors) +
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Fig. 2 ADMIXTURE plot of four human populations: Colombia (CLM), Spain (IBS), Peru (PEL), and Yoruba (YRI).
Each column is an individual, and for each individual the ancestry fraction for each of three continental
population groups is shown: African (blue), European (orange), and Native American (red)

Ancestry Fraction

geom_point(size = 6, pch =21, color="black") + theme_clas-

sic() + theme(axis.title=element_text(size=18))
3.8 Admixture Run ADMIXTURE analysis to characterize patterns of genetic
ancestry and admixture among the samples (see Fig. 2). See Note 9.

$ admixture 1000Genomes.4Pops.Chr22.GRCh38.Pruned.bed
3-j4
This command creates the files:

1000Genomes.4Pops.Chr22.GRCh38.Pruned.3.Q
1000Genomes.4Pops.Chr22.GRCh38.Pruned.3.P

3.9 Visualize Visualize ADMIXTURE results using R studio.

ADMIXTURE Results 1. Install R packages needed for visualization.

install.packages("dplyr")
install.packages("ggplot2")
install.packages("reshape2")
2. Import libraries.
library("dplyr")
library("ggplot2")
library("reshape2")
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3. Get individual identifiers and individual population labels for
all samples.

individualToPopGroupData = read.table(’samplesToPops.
tsv’, col.names = ¢("IndividualID", "PopGroup"), header
= FALSE)

allCombinedFAMData = read.table(’1000Genomes.4Pops.
Chr22.GRCh38.Pruned.fam’, header = FALSE, col.
names = c("FamilyID", "IndividualID", "N1", "N2"
IINSH) IIN4II)>

allCombinedFAMData = data.frame("IndividuallD" = all-
CombinedFAMData| , 2:2])

4. Visually inspect the results.
head(individualToPopGroupData)

IndividuallD PopGroup

1 HG01250 CLM
2 HGO01255 CLM
3 HGO01274 CLM
4 HGO01279 CLM
5 HGO01123 CLM
6 HGO01130 CLM

head(allCombinedFAMData)

IndividualID
1 HGO01112
2 HGO1113
3 HGO01119
4 HGO01121
5 HGO01122
6 HGO01124

5. Assign population labels to samples from ADMIXTURE
output.

allCombinedFAMandPopGroupData = join(allCombined-
FAMData, individualToPopGroupData)

head(allCombinedFAMandPopGroupData)
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IndividuallD PopGroup
1 HGO1112 CLM
2 HGO1113 CLM
3 HGO1119 CLM
4 HGO01121 CLM
5 HGO01122 CLM
6 HGO01124 CLM

6. Extract ancestry estimates obtained from ADMIXTURE.

admixtureAncestryEstimates = read.table("1000Genome-
s.4Pops.Chr22.GRCh38.Pruned.3.Q", header = FALSE)

head(admixtureAncestryEstimates)

Vi V2 V3
1 0.00001 0.00001 1.000
2) 0.00001 0.33841 0.662
3 0.00001 0.49758 0.502
4 0.00001 0.49336 0.507
5 0.06223 0.48273 0.455
6 0.02341 0.16010 0.816

7. Combine individual ancestry estimates with individual identi-
fiers and population labels.

combinedAncestryEstimatesData = cbind(allCombinedFA-
MandPopGroupData, admixtureAncestryEstimates)

head(combinedAncestryEstimatesData)

IndividuallD PopGroup Vi V2 V3
1 HGO1112 CLM 0.00001 0.00001 1.000
2 HGO01113 CLM 0.00001 0.33841 0.662
3 HGO01119 CLM 0.00001 0.49758 0.502
4 HGO01121 CLM 0.00001 0.49336 0.507
5 HGO01122 CLM 0.06223 0.48273 0.455
6 HGO01124 CLM 0.02341 0.16010 0.816
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8. Characterize population ancestry means.
options(scipen = 10000)

combinedAncestryEstimatesData %>% group_by(PopGroup)
%>% summarise_at(vars(V1, V2, V3), funs(mean))

PopGroup Vi V2 V3

CLM 0.0709 0.273122 0.65601
IBS 0.0028 0.001514 0.99569
PEL 0.0343 0.819700 0.14604
YRI 0.9991 0.000161 0.00078

9. Rename the columns and assign proper population labels to
each cluster.

combinedAncestryEstimatesData = combinedAncestryEsti-
matesData %>% dplyr::rename(" European" =
"V3", "African" = "V1", "NativeAmer-
ican" = "V2"))

head(combinedAncestryEstimatesData)

IndividuallD PopGroup African  NativeAmerican European

1 HGO1112 CLM 0.00001 0.00001 1.000
2 HGO1113 CLM 0.00001 0.33841 0.662
3 HGO1119 CLM 0.00001 0.49758 0.502
4 HGO1121 CLM 0.00001 0.49336 0.507

10. Check average ancestry for each population.
options(scipen = 10000)

combinedAncestryEstimatesData %>% group_by(PopGroup)
%>% summarise_at(vars(European, African, NativeAmeri-
can), funs(mean))

PopGroup European African NativeAmerican
<fet> <dbl> <dbl> <dbl>

CLM 0.65601 0.0709 0.273122

1BS 0.99569 0.0028 0.001514

PEL 0.14604 0.0343 0.819700

YRI 0.00078 0.9991 0.000161
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11. Reformat the data in one column for graphs.

combinedAncestryEstimatesDataSorted = arrange(combinedAn-
cestryEstimatesData, European, African, NativeAmerican,
group_by = PopGroup)

row.names(combinedAncestryEstimatesDataSorted) <- NULL

combinedAncestryEstimatesDataSorted$index=as.numeric(row-
names(combinedAncestryEstimatesDataSorted))

combinedAncestryEstimatesDataSortedMelt = melt(data = com-
binedAncestryEstimatesDataSorted, id.vars = ¢("Individua-
1ID", "PopGroup", "European", "African",
"NativeAmerican", "index"), measure.vars = c("European",
"African", "NativeAmerican"))

colnames(combinedAncestryEstimatesDataSorted Melt)[ 7] <-
’Ancestry’

colnames(combinedAncestryEstimatesDataSorted Melt)[ 8] <-
’AncestryFraction’

print(combinedAncestryEstimatesDataSortedMelt[ ¢(’Individua-
1ID’;  "PopGroup",  "Ancestry",  "AncestryFraction",
"index")])

12. Define the ancestry colors.

colors <- ¢("African" = "blue", "European" = "orange",
"NativeAmerican" = "red")

13. Render the ADMIXTURE plot.
options(repr.plot.width=16, repr.plot.height==8)

ggplot(data=combinedAncestryEstimatesDataSorted Melt,
aes(x=as.character(index), y=AncestryFraction,
fill=Ancestry)) +
geom_bar(stat="identity", width=1) + facet_grid(cols
vars(PopGroup), scales = "free", space = "free", drop =
TRUE, switch="both") +

scale_fill_manual(values=colors) +

labs(y="Percentage Ancestry Estimate", title = "Admix-
ture plot for four population groups from 1KGP", subti-
tle = "Groups: IBS, PEL, YRI, & CLM") +

theme(axis.title.x=element_blank(), axis.text.
x=element_blank(), axis.ticks.x=element_blank(), panel.
spacing.x=unit(1, "lines"),
strip.background = element_blank(), panel.background
= element_blank(), axis.text=element_text(size=12),

axis.title=element_text(size=18), strip.text.x = ele-
ment_text(size = 18), title = element_text(size = 20))
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4 Notes

1. Operating system installation

We recommend using the Ubuntu operating system if users
are working on their own laptop. Instructions for installing
Ubuntu on a laptop can be found at https: //ubuntu.com/
tutorials /install-ubuntu-desktop#1-overview.

. Conda installation

Conda can be installed using the Linux commands shown
below, following the series of prompts after the first command:

$ bash Miniconda3-py38_4.9.2-Linux-x86_64.sh
$ conda create --name myenv
$ conda activate myenv

Please note that the “$” symbol refers to the start of the
Linux command line, after which the commands should be
entered and executed as shown.

. PLINK and ADMIXTURE installation

The Conda versions of the programs PLINK and ADMIX-
TURE can be installed using the Linux commands shown
below.
$ conda install -¢ sjnewhouse plink

$ conda install -c bioconda admixture

. R studio

R studio can be installed following the instructions in the
link provided in the Materials section, using the *.deb file
corresponding to the Ubuntu operating system.

. 1000 Genomes Project human variant data

The 1000 Genomes Project human genome variant data
can be downloaded using the following commands:

$ wget fip://ftp.1000genomes.ebi.ac.uk /voll /ftp /data_col-
lections /1000G_2504_high_coverage /working/pha-
se3_liftover_nygc_dir/phase3.chr22. GRCh38.GT.cross-
map.vcf.gz.tbi

$ wget fip://ftp.1000genomes.ebi.ac.uk /voll /ftp /data_col-
lections /1000G_2504_high_coverage /working/pha-
se3_liftover_nygc_dir/phase3.chr22. GRCh38.GT.cross-
map.vcf.gz

Please note that the wget command and the following ftp
address should be entered on a single line.

. The 1000 Genomes Project human genome sample

The 1000 Genomes Project human genome sample meta-
data can be downloaded using the “Download the list” button
on the link provided in the Materials section. It should be


https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview
https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview
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noted that the sample metadata file igsr_samples.tsv will be
downloaded into the user’s browser default download direc-
tory and will need to be transferred to the Linux working
directory where the analyses are to be conducted.

. Linkage disequilibrium (LD) pruning

Linkage disequilibrium (LD) pruning vyields a reduced
subset of genetic variants that are in approximate linkage equi-
librium with each other (i.e., unlinked variants). The parameter
values for the --indep-pairwise flag define how LD pruning
proceeds. The first value (500) refers to the size of the genomic
window, the second value (5) is the window step size, and the
third value (0.25) is the variance inflation factor, which is used
to measure the extent of linkage between pairs of variants.
Details on LD pruning in PLINK can be found at https://
zzz.bwh.harvard.edu/plink /summary.shtml#prune.

. PCA analysis

Principal components analysis (PCA) is a technique that is
used to reduce the dimensionality of large datasets and is ideal
for the analysis of high-dimension genomic variant data. PCA
analyzes the genomic variant covariance matrix to create uncor-
related, orthogonal variables that maximize the variance in the
data — the principal components (PCs). Visualizing genomic
data in PC-space provides an intuitive way to evaluate the
genetic relationships among samples. The PLINK PCA pro-
gram yields 20 PCs, and we visualize the first two PCs here.

. ADMIXTURE

The program ADMIXTURE characterizes each individual
with respect to the proportion of the genome that is made up
of K theoretical ancestral source populations. The value of K
can be chosen a priori, based on knowledge of the populations
under analysis, or ADMIXTURE can be run across a series of K
values to determine which value fits the data best. The samples
analyzed here are from Africa (YRI), Europe (IBS), and the
Americas (CLM and PEL). Since these populations are char-
acterized primarily by African, European, and Native American
continental ancestry fractions, we chose a value of K= 3 for the
analysis. The value of 3 after the file name in the command line
corresponds to the K-value, and the —j 4 flag corresponds to the
number of threads to use.
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