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Abstract 

Background  Diabetes is a common disease with a major burden on morbidity, mortality, and productivity. Type 
2 diabetes (T2D) accounts for roughly 90% of all diabetes cases in the USA and has a greater observed prevalence 
among those who identify as Black or Hispanic.

Methods  This study aimed to assess T2D racial and ethnic disparities using the All of Us Research Program data 
and to measure associations between genetic ancestry (GA), socioeconomic deprivation, and T2D. We used the All 
of Us Researcher Workbench to analyze T2D prevalence and model its associations with GA, individual-level (iSDI), 
and zip code-based (zSDI) socioeconomic deprivation indices among participant self-identified race and ethnicity 
(SIRE) groups.

Results  The study cohort of 86,488 participants from the four largest SIRE groups in All of Us: Asian (n = 2311), Black 
(n = 16,282), Hispanic (n = 16,966), and White (n = 50,292). SIRE groups show characteristic genetic ancestry patterns, 
consistent with their diverse origins, together with a continuum of ancestry fractions within and between groups. The 
Black and Hispanic groups show the highest levels of socioeconomic deprivation, followed by the Asian and White 
groups. Black participants show the highest age- and sex-adjusted T2D prevalence (21.9%), followed by the Hispanic 
(19.9%), Asian (15.1%), and White (14.8%) groups. Minority SIRE groups and socioeconomic deprivation, both iSDI 
and zSDI, are positively associated with T2D, when the entire cohort is analyzed together. However, SIRE and GA 
both show negative interaction effects with iSDI and zSDI on T2D. Higher levels of iSDI and zSDI are negatively associ‑
ated with T2D in the Black and Hispanic groups, and higher levels of iSDI and zSDI are negatively associated with T2D 
at high levels of African and Native American ancestry.

Conclusions  Socioeconomic deprivation is associated with a higher prevalence of T2D in Black and Hispanic 
minority groups, compared to the majority White group. Nonetheless, socioeconomic deprivation is associated 
with reduced T2D risk within the Black and Hispanic groups. These results are paradoxical and have not been reported 
elsewhere, with possible explanations related to the nature of the All of Us data along with SIRE group differences 
in access to healthcare, diet, and lifestyle.

Keywords  Health disparities, Diabetes, Race, Ethnicity, Genetic ancestry, Socioeconomic deprivation, Interactions, All 
of Us

*Correspondence:
Leonardo Mariño‑Ramírez
marino@nih.gov
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44263-023-00025-2&domain=pdf


Page 2 of 12Lam et al. BMC Global and Public Health            (2023) 1:22 

Background
Diabetes is a pervasive and costly disease in the USA and 
beyond, affecting over 34.2 million Americans [1] and 
costing billions of dollars annually in both healthcare 
expenses and reduced productivity [2]. Of those afflicted 
with diabetes in the USA, type 2 diabetes (T2D) accounts 
for roughly 90% of cases [3]. T2D disproportionately 
affects minority racial and ethnic groups in the USA, with 
greater prevalence rates being observed among Hispanic, 
non-Hispanic Asian, and non-Hispanic Black individu-
als than among non-Hispanic White individuals [1, 4, 5]. 
In addition to minority race and ethnicity, it has been 
demonstrated that socioeconomic deprivation increases 
one’s risk of developing T2D [6, 7]. T2D risk has also 
been shown to vary with genetic ancestry, with European 
ancestry being associated with lower odds of developing 
T2D and African and Native American ancestry being 
associated with greater odds of developing T2D [8–11].

The causes of T2D are complex and span a multitude 
of genetic, demographic, social, and environmental fac-
tors that may modulate one another [12, 13]. As such, 
insight into the epidemiology of T2D may be gleaned 
from observing how these factors act in concert to affect 
disease risk. One promising source of data from which 
such insight may be obtained is the United States (US) 
National Institutes of Health (NIH) All of Us Research 
Program (abbreviated as All of Us hereafter) [14].

All of Us was launched in 2015 with the mission of 
advancing individualized healthcare and health equity 
through the collection of genetic and health data from 
thousands of individuals across the USA [14]. The pro-
gram places a special emphasis on recruiting participants 
from populations that have been historically underrep-
resented in health research. The resulting diverse par-
ticipant cohort provides rich opportunities to investigate 
how self-identified race, ethnicity, and genetic ancestry, 
as well as their respective interactions with socioenviron-
mental factors, influence T2D risk in the USA.

The first aim of this study was to determine whether 
there is evidence for T2D racial and ethnic health dis-
parities in the All of Us cohort. The second aim was to 
assess whether and how SED, genetic ancestry, and their 
respective interactions contribute to T2D disparities and 
whether these contributions are consistent with what 
is known about how genetic and environmental factors 
influence T2D risk. We previously observed synergistic 
effects between socioeconomic deprivation and genetic 
ancestry in increasing T2D risk among ethnic minorities 
using data from the United Kingdom Biobank [15, 16]. 
The results of this study may reveal T2D disparity risk fac-
tors that could be potential targets of policy measures that 
aim to ameliorate the T2D disease burden in the USA. 
This study could also provide insight into the potential of 

All of Us as a resource for investigating epidemiological 
questions and health disparities.

Methods
Study cohort
The cohort for this study was assembled from participant 
data made available through the All of Us Researcher 
Workbench, a cloud-based platform through which regis-
tered researchers can access and analyze All of Us partici-
pant data. All of Us volunteer participants enroll directly 
through JoinAllofUs.org or at participating health care 
provider organizations. The participant cohort con-
sists of adults aged 18 years and older who reside in the 
USA or in a US territory. Those who were either incar-
cerated or lacked the capacity to consent at the time of 
enrollment were excluded from the program. The All of 
Us operational protocol (#2016–05) was approved by the 
NIH Institutional Review Board.

All of Us participant data are available to registered 
researchers via the Researcher Workbench: https://​www.​
resea​rchal​lofus.​org/​data-​tools/​workb​ench/. Participant 
data consists of three datasets corresponding to differ-
ent access tiers. The public tier dataset exclusively con-
tains aggregate data and is freely accessible to all. The 
registered tier dataset consists of de-identified, individ-
ual-level data and is restricted to approved researchers. 
The controlled tier dataset consists of individual-level 
genomic data and expanded electronic health record 
(EHR) information. The study cohort was built using 
the All of Us Registered Tier Dataset v6 (curated version 
R2022Q2R2) and the All of Us Controlled Tier Dataset v6 
(curated version C2022Q2R2). These datasets consist of 
data collected from participants who enrolled from 2018 
to 2021, with a data cutoff date of January 1, 2022, and 
a data release date of June 22, 2022. Participant EHR, 
demographic, and socioeconomic data were obtained 
from the Registered Tier dataset. Participant genomic 
data were obtained from the Controlled Tier dataset. 
Demographic data consisted of self-identified race and 
ethnicity (SIRE), date of birth, and sex at birth. Interna-
tional Classification of Diseases codes (ICD-9-CM and 
ICD-10-CM) were extracted from participant EHR data 
and mapped to phecode 250.2 to classify individuals as 
T2D cases and controls [17]. Following the phecode con-
vention, patients who exhibited phenotypes correspond-
ing to phecodes 249–250.99 were excluded from the 
study cohort, as they bore conditions too similar to T2D 
to be reliably assigned as controls.

Race and ethnicity
Following enrollment, All of Us participants responded 
to a number of surveys spanning topics concerning 
their background, lifestyle, and health. In a core survey 

https://www.researchallofus.org/data-tools/workbench/
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titled “The Basics,” participants are asked to select one or 
more of seven main racial or ethnic categories that best 
describe them: (1) American Indian or Alaska Native, 
(2) Asian, (3) Black, (4) Hispanic or Latino, (5) Middle 
Eastern or North African, (6) Native Hawaiian or Pacific 
Islander, and (7) White. Additionally, participants could 
respond with “None of these fully describe me” or “Pre-
fer not to answer.” The All of Us Researcher Workbench 
provides these data as self-identified race and ethnic-
ity categories, following the US Office of Management 
and Budget Standards. This information is currently 
unavailable for individuals who self-identify as Ameri-
can Indian or Alaska Native. Our study cohort consists 
of four largest SIRE categories for All of Us participants: 
Asian, Black, Hispanic, and White. We defined non-
Hispanic Asian, Black, and White participants as those 
who selected these respective racial categories in the 
“The Basics” core survey and no other racial or ethnic 
category. We defined Hispanic participants as all who 
selected “Hispanic or Latino.”

Quantifying socioeconomic deprivation
To quantify socioeconomic deprivation, we used a zip 
code-based socioeconomic deprivation index (zSDI) 
devised by Brokamp et  al. [18]. zSDI values are avail-
able for most participants in the All of Us Researcher 
workbench. Further motivating our decision to use zSDI 
as a metric for deprivation is the demonstrated role of 
geographic location in driving and perpetuating health 
disparities [19]. The zSDI is based on six different socio-
economic variables included in the 2015 American Com-
munity Survey [20]. The values of these variables are 
defined for census tracts and include (1) the proportion 
of the population whose income in the past 12  months 
placed them below the poverty threshold, (2) the median 
household income of the population, (3) the proportion 
of the population who are at least 25  years of age who 
have at least a high school level of education, (4) the 
proportion of the population with no health insurance 
coverage, (5) the proportion of households that received 
public assistance income or food stamps within the past 
12  months, and (6) the proportion of households that 
are vacant. The zSDI represents the value of the first 
principal component resulting from a principal compo-
nent analysis performed on these six measures. The zSDI 
ranges from 0 to 1, with a higher value corresponding to 
higher levels of socioeconomic deprivation.

All of Us Researcher Workbench survey questions 
related to socioeconomic status were used to create 
an individual-level socioeconomic deprivation index 
(iSDI) comparable to the area-level deprivation index 
created by Brokamp et  al. [18]. The following ques-
tions from All of Us’s “The Basics” survey were used 

to calculate iSDI: (1) “What is your annual household 
income from all sources?”, (2) “Do you own or rent the 
place where you live?”, (3) “Are you covered by health 
insurance or some other kind of health care plan?”, (4) 
“What is your current employment status?”, and (5) 
“What is the highest grade or year of school you com-
pleted?”. We coded participant responses to these ques-
tions as ordinal variables and performed dimensionality 
reduction using principal component analysis of the 
ordinal values to compute iSDI for individual All of Us 
participants. Like the zSDI area-level deprivation index 
created by Brokamp et al. [18], this index ranges from 0 
to 1, with greater values corresponding to higher levels 
of deprivation.

Genetic ancestry
Genome-wide genotype data was made available for 
165,080 participants through the All of Us Controlled 
Tier Dataset v6. Genotype variants were called for 
1,824,517 genomic positions on the GRCh38/hg38 
reference genome build using the Illumina Global 
Diversity Array. We harmonized All of Us participant 
genotype variants with whole genome sequence vari-
ant data from global reference populations charac-
terized as part of the 1000 Genomes Project and the 
Human Genome Diversity Project [21, 22]. Biallelic 
variants that were shared across the All of Us, and the 
global reference population variant sets were merged, 
ensuring consistency between reference and alternate 
allele designations. Linkage disequilibrium (LD) prun-
ing was performed with the parameters (1) window 
size = 50, (2) step size = 10, and (3) pairwise threshold 
r2 < 0.1. The final merged, harmonized, and LD-pruned 
genotype data set consists of 187,795 variants. Variant 
merging, harmonization, and LD were performed using 
PLINK version 1.9 [23].

The Rye (Rapid ancestrY Estimation) program was used 
to infer participant genetic ancestry from the final variant 
dataset [24]. Rye performs genetic ancestry inference by 
utilizing principal component analyses of genomic vari-
ant data. Principal component analysis was performed 
on the harmonized variant dataset using the FastPCA 
program implemented in PLINK version 2.0 [25, 26]. 
The resulting data was used to define reference samples 
representing six continental ancestry groups: African, 
Asian, European, Native American, Oceanian, and West 
Asian. Rye was run on the first 25 principal components 
of the data, assigning ancestry group fractions to each 
participant.

Statistical analysis
Due to the overrepresentation of older and female 
participants in the study cohort, SIRE-specific T2D 
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prevalence estimates were adjusted for age and sex. 
For every SIRE group, unadjusted T2D prevalence, 
p, was taken to be K cases over n total individuals 
belonging to the SIRE group. Age/sex adjustment was 
performed by weighing the unadjusted prevalence for 
groups of participants corresponding to different age-
sex combinations using census fractions, f, calculated 
from American Community Survey 1-year estimates 
[20]. Census fractions, in this case, are the propor-
tion of the total US population of a SIRE group that 
falls into a particular age-sex category. From different 
age-sex categories, c, adjusted prevalence, p ̂, was cal-
culated like so:

95% confidence intervals for each adjusted SIRE-
specific prevalence estimate were calculated by adding 
and subtracting the product of each adjusted estimate’s 
standard error, σ(p̂) , and 1.96 to and from the adjusted 
prevalence estimate:

All T2D model analyses were performed in R ver-
sion 4.2.2 using the stats package [27]. Multivariable 
logistic regression was used to investigate associations 
between risk factors such as SIRE, genetic ancestry, 
and SDI on T2D case status (case = 1, control = 0). Par-
ticipant age and sex were included as covariates in all 
models. Regression models were constructed using the 
glm function in R. To assess the effects of geographical 
clustering on our results, multilevel models were con-
structed using the glmer function from the lme4 pack-
age in R [28]. Interaction effects were also deduced 
with the glm function in R. These effects were visu-
alized using the plot_model function from the sjPlot 
R package [29]. Specifications for all models can be 
found in the titles for their corresponding tables.

p̂ =

∑

c∈C

fc

nc
Kc

σ p =

c∈C

f 2c
nc

Kc

nc
1−

Kc

nc

pǫ[p̂− 1.96 × σ(p̂), p̂+ 1.96 × σ(p̂)]

Results
The cohort for this study was selected from All of Us 
participants who have EHR data available and who fell 
outside the exclusion range for T2D, as defined by the 
phecode exclusion scheme (Additional file  1: Fig. S1). 
Individuals in the cohort were restricted to those whose 
survey responses designated them to one of four SIRE 
groups—Asian, Black, Hispanic, and White—which rep-
resent the four largest racial or ethnic categories in the 
USA. The study cohort was further restricted to indi-
viduals for whom genomic and socioeconomic data 
were available and whose sex at birth was either male or 
female. Our final cohort consisted of 86,488 individu-
als whose mean age was 54.3 and of whom 64.78% were 
female (Table 1).

All of Us participant genomic variant data were ana-
lyzed together with variant data from global reference 
populations to infer participants’ genetic ancestry frac-
tions for six continental ancestry groups: African, Asian, 
European, Native American, Oceanian, and West Asian 
(Additional file  1: Table  S1  and Fig. S2). Participant 
genetic ancestry fractions, stratified by SIRE groups, 
are shown in Fig.  1A. SIRE groups show characteristic 
ancestry patterns, together with continua of ancestry 
fractions within and between groups. Those who self-
identified as belonging to the Asian SIRE group were 
predominantly of Asian ancestry, the Black SIRE group 
of African ancestry, and the White SIRE group of Euro-
pean ancestry (Fig. 1B). Some exceptions to this pattern 
can be noted however, as in the case of certain individu-
als belonging to the White SIRE group who were mostly 
of West Asian ancestry, and in the case of certain indi-
viduals belonging to the Black and Asian SIRE group 
who were mostly of European ancestry. In comparison 
to the Asian, Black, and White SIRE groups, individu-
als belonging to the Hispanic SIRE group demonstrated 
great heterogeneity in their ancestry fractions, with 
substantial European, Native American, and African 
components. This is consistent with the fact that par-
ticipants with Hispanic ethnicity can identify with any 
race, following the current OMB standards.

All of Us participant socioeconomic deprivation was 
measured using a composite, place-based index (zSDI) 
that includes information on income, education, housing, 

Table 1  Study cohort

Characteristic Full cohort
(n = 86,488) (100%)

Asian
(n = 2311) (2.67%)

Black
(n = 16,282) (18.83%)

Hispanic
(n = 16,966) (19.62%)

White
(n = 50,929) (58.89%)

Mean age—years (SD) 55.31 (16.78) 47.70 (16.41) 52.93 (14.70) 48.20 (15.99) 58.78 (16.69)

Female (%) 56,030 (64.78) 1471 (63.65) 10,224 (62.79) 12,155 (71.64) 32,180 (63.19)

Male (%) 30,458 (35.22) 840 (36.35) 6,058 (37.21) 4811 (28.36) 18,749 (36.81)
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Fig. 1  Genetic ancestry and socioeconomic deprivation in the All of Us cohort. A Genetic ancestry fractions are shown for six continental ancestry 
groups, stratified by participant self-identified race and ethnicity (SIRE). Stacked bar charts show the ancestry composition each individual, 
color-coded by ancestry as indicated in the key. B Average ancestry group fractions (y-axis) are shown for each SIRE group (x-axis). C Distributions 
of the socioeconomic deprivation index (zSDI) for each SIRE group. Box plots show the median and interquartile ranges, with median values 
indicated
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and public assistance. We observe a clear disparity 
in zSDI across the four SIRE groups, with those self-
identifying as Black and Hispanic exhibiting the high-
est median zSDI (0.35), followed by the Asian (0.31), 
and White (0.30) groups (Fig.  1C; ANOVA, F = 4793, 
p < 2e − 16).

Participant T2D diagnoses gleaned from EHR were 
used to calculate prevalence values for each of the four 
SIRE groups (Fig.  2A). Of these four groups, the Black 
SIRE group demonstrated the highest adjusted preva-
lence percentage (21.87%, CI 0.60) with the Hispanic 
SIRE group following closely behind (19.92%, CI 0.58). 

Fig. 2  Type 2 diabetes (T2D) prevalence differences in the All of Us cohort. A Age and sex-adjusted average prevalence values, with 95% confidence 
intervals, are shown for participant self-identified race and ethnicity (SIRE) groups. B Odds ratios, with 95% confidence intervals, are shown 
for the multivariable logistic regression model: T2D ~ SIRE + age + sex. The odds ratio for age represents the change in T2D risk for every 1-year 
increase in age
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The Asian (15.14%, CI 1.37) and White (14.80%, CI 0.32) 
SIRE groups exhibit the lowest adjusted prevalence per-
centages. The relative T2D prevalence values among 
SIRE groups are similar to what is seen when different 
methods are used to create the cohort from All of Us data 
and resemble the pattern of T2D disparities reported by 
the Centers for Disease Control and Prevention (CDC; 
Additional file 1: Table S2).

To further investigate the association between T2D risk 
and SIRE, we modeled T2D case/control status as a func-
tion of SIRE, using age and sex as covariates (Fig. 2B). In 
this model, the White SIRE group was used as a reference 
group. The results of this model revealed that belonging 
to the Hispanic as opposed to belonging to the White 
SIRE group conferred the greatest increase in the odds 
of T2D (OR 2.46, CI 2.35–2.58), followed by belong-
ing to the Black SIRE group (OR 2.42, CI 2.32–2.53) and 
followed last by belonging to the Asian SIRE group (OR 
1.31, CI 1.16–1.48). Additionally, increasing age (OR 
1.04, CI 1.04–1.05) is associated with greater predicted 
T2D risk and being female (OR 0.81, CI 0.78–0.84) is 
associated with lower predicted T2D risk.

A similar analysis was performed to elucidate the 
association between T2D risk and genetic ancestry. In 
this analysis, we modeled T2D case/control status as a 
function of a particular genetic ancestry fraction, using 
age and sex as covariates (Table 2). A model with these 
specifications was generated for four genetic ancestry 
groups that our four SIRE groups of interest are closely 
associated with: Asian ancestry (Asian SIRE), African 
(Black SIRE), European (White SIRE), and Native Ameri-
can (Hispanic SIRE). African ancestry has the highest 
positive coefficient (0.21), suggesting that there is an 
increased level of T2D risk among those with greater 
African ancestry fractions. Native American ancestry has 
the second-highest coefficient (0.14). Asian (− 0.10) and 
European (− 0.19) have negative coefficients, suggesting 
that there is lower T2D risk among those with a greater 
proportion of these ancestry fractions. All of these 

coefficients are significant at an alpha of 0.05. These pat-
terns largely remained and were amplified when SDI was 
controlled for (Additional file 1: Table S3).

Additional models were created to investigate the 
association between T2D risk and socioeconomic dep-
rivation, which modeled T2D case/control status as a 
function of area-based zSDI and individual-level iSDI, 
using age and sex as covariates. Participant area-based 
(zSDI) and individual-level (iSDI) socioeconomic depri-
vation are signifantly correlated (r = 0.26, p =  < 2.2e − 16). 
As would be expected, the model returned a high, posi-
tive coefficient for zSDI (2.52) and iSDI (1.99), indicating 
greater odds of T2D at greater levels of both area-based 
and individual-level socioeconomic deprivation. Mul-
tilevel modeling with iSDI as a fixed effect and zSDI as 
the random effect returned a high, positive coefficient 
for iSDI (1.98), suggesting that individual-level socioeco-
nomic deprivation remains tightly associated with T2D 
risk when controlling for zip code clustering (Table 2).

Additional multivariable logistic regression models 
were created to investigate how SIRE, genetic ances-
try, and SDI interact to modify predicted T2D risk. As 
part of this analysis, we modeled T2D case/control sta-
tus as a function of either the SIRE-zSDI or GA-zSDI 
interaction terms, using age and sex as covariates. The 
SIRE-zSDI models returned significant and negative 
interaction coefficients for the Black-zSDI (− 1.67) and 
Hispanic-zSDI (− 1.40) interaction terms, suggesting 
that greater socioeconomic deprivation is associated 
with reduced risk of T2D for individuals belonging 
to either the Black or Hispanic SIRE groups (Table  3 
and Fig.  3A). However, when restricting the cohort to 
native-born participants, the Hispanic-zSDI interac-
tion term is no longer significant (Additional file  1: 
Table S4). Relative excess of risk interaction (RERI) val-
ues for the Black (− 4.02) and Hispanic (− 3.66) groups 
are also negative, indicating subadditive effects of SIRE 

Table 2  T2D, genetic ancestry, and SDI

T2D was modeled by ancestry, zipcode-based zSDI, and individual-level iSDI, 
controlling for age and sex. iSDI was modeled using single-level (iSDI-s) and 
multi-level (iSDI-m) models with iSDI-m as a fixed effect and zipcode as the 
random effect

Coefficient Estimate Standard error Z value P value

African 0.21 0.02 10.58  < 2e − 16

Asian  − 0.10 0.05  − 2.11 0.0348

European  − 0.19 0.02  − 9.81  < 2e − 16

Native American 0.14 0.05  − 4.18 2.86e − 05

zSDI 2.52 0.14 17.59  < 2e − 16

ISDI-s 1.99 0.04 54.16  < 2e − 16

ISDI-m 1.98 0.04 49.29  < 2e − 16

Table 3  zSDI interactions with race/ethnicity and genetic 
ancestry

T2D ~ SIRE*zSDI + age + sex, T2D ~ ancestry*zSDI + age + sex

Coefficient Estimate Standard error Z value P value

SIRE
  Asian-zSDI  − 0.71 1.07  − 0.67 0.50

  Black-zSDI  − 1.67 0.39  − 4.26 2.06e − 05

  Hispanic-zSDI  − 1.40 0.37  − 3.80 1.43e − 04

Genetic ancestry
  African-zSDI  − 3.59 0.40  − 8.91  < 2e − 16

  Asian-zSDI  − 2.90 1.11  − 2.62 8.84e − 03

  European-zSDI 1.34 0.38 3.51 4.42e − 04

  Native American-
zSDI

 − 4.84 0.84  − 5.77 8.18e − 09
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Fig. 3  Interaction effects between race/ethnicity, genetic ancestry, and socioeconomic deprivation (zSDI) on T2D prevalence. T2D prevalence 
estimates, and 95% confidence intervals, are taken from multivariable logistic regression models that include interaction terms and are stratified 
by low (red), medium (green), and high (blue) zSDI. A Results for SIRE groups are based on the model T2D ~ SIRE*zSDI + age + sex. B–E Results 
for genetic ancestry (GA) fractions are based on the model T2D ~ GA*zSDI + age + sex
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and zSDI. The opposite trend is observed for individu-
als belonging to the Asian and White SIRE groups, in 
which greater socioeconomic deprivation is associ-
ated with a greater risk of T2D. The negative interac-
tions observed between Black and Hispanic SIRE and 
socioeconomic deprivation can also be seen when 
individuial-level iSDI is used to model T2D outcomes 
(Additional file 1: Table S5).

Similarly significant and negative interaction coefficients 
were returned by the GA-zSDI models, specifically for the 
African-zSDI (− 3.59), Asian-zSDI (− 2.90), and Native 
American-zSDI (− 4.84) interaction terms (Table  3). In 
contrast, a significant positive interaction coefficient was 
reported for the European-zSDI (1.34) interaction term. 
RERI values show the same trends, with negative values 
for African-zSDI (− 7.76), Asian-zSDI (− 6.23), and Native 
American-zSDI (− 10.48), compared to positive RERI for 
European-zSDI (2.18). Visualization of the GA-zSDI inter-
actions shows that high zSDI is a risk factor for T2D at low 
levels of non-European ancestry and this trend switches at 
high levels of non-European ancestry, where low zSDI has 
a higher predicted risk (Fig. 3B–E). This pattern is particu-
larly pronounced for African and Native American ances-
try. The pattern of all of these interaction effects remains 
when the cohort is stratified by sex (Additional file  1: 
Table S6, Table S7, Fig. S3, and Fig. S4).

These results were validated with another set of mod-
els which modeled T2D risk as a function of zSDI, 
using age and sex as covariates (Table  4). These mod-
els were each run on a different subset of the study 
cohort consisting exclusively of individuals from one of 
the four SIRE groups under investigation. The models 
corresponding to the Black and Hispanic SIRE cohorts 
returned negative coefficients for zSDI (− 0.70, − 0.41). 
The model corresponding to the White SIRE cohort 
returned a significant and positive coefficient for zSDI 
(0.77), consistent with the coefficients observed for the 
SIRE-zSDI interaction terms.

Discussion
The patterns observed in the SIRE group-specific T2D 
prevalence estimates align closely with patterns observed 
in other calculations of T2D prevalence (Additional 
file 1: Table S1). Across the different methods we used to 

calculate prevalence estimates using All of Us data, T2D 
prevalence was consistently highest among individuals 
identifying as Black and second highest among individu-
als identifying as Hispanic. Across almost all the methods 
we have used to calculate T2D prevalence, the prevalence 
was lowest among individuals identifying as White and 
second highest among individuals identifying as Asian. 
These disparities are consistent with group-specific T2D 
prevalence estimates shown in the CDC National Diabe-
tes Statistics Report, supporting the use of All of Us to 
study T2D disparities [30].

This study validates previous investigations into the 
association between factors such as genetic ancestry, 
SIRE, and T2D risk. Past observations have shown that 
populations that are more socioeconomically deprived 
and consist of more individuals identifying as Black or 
Hispanic (or African or Native American ancestry) suf-
fer from a greater T2D disease burden than their White 
and European ancestry counterparts [7–11]. The analyses 
that we performed on All of Us data reveal similar asso-
ciations, underscoring the need for policy measures to 
alleviate the T2D disease burden of minority and socio-
economically deprived communities. What has been less 
thoroughly documented, however, is how interactions 
between genetic ancestry and socioeconomic deprivation 
are associated with T2D prevalence.

We previously explored interactions between soci-
oeconomic deprivation and genetic ancestry using 
data obtained from the UK Biobank, a large-scale bio-
medical research resource that consolidates genetic 
and health data on roughly 500,000 participants from 
across the UK [15, 16]. These analyses revealed positive 
interaction effects between socioeconomic depriva-
tion and ancestry, in contrast to the interaction effects 
reported here for the All of Us cohort, which returned 
significant negative interaction coefficients for all GA-
zSDI interaction terms except European-zSDI. Nega-
tive interaction coefficients were also returned for all 
SIRE-zSDI interaction terms in this study. The negative 
Hispanic-zSDI term, however, is no longer significant 
when interaction analyses are run on a subset of the 
study cohort that exclusively consists of those native 
to the USA. This may be a result of the healthy immi-
grant paradox—a phenomenon in which immigrants 
have positive health outcomes relative to their socio-
economic status. This phenomenon was first reported 
among Hispanic immigrants living in the Southwestern 
USA [31]. The negative interactions between SIRE and 
zSDI are confirmed by zSDI effect size differences with 
and between groups. When the entire cohort is mod-
eled together, zSDI is positively associated with T2D 
(Table  2), but zSDI is negatively associated with T2D 
for Black and Hispanic groups (Table 4).

Table 4  zSDI for SIRE-specific cohorts

T2D ~ zSDI + age + sex

Coefficient Estimate Standard error Z value P value

Asian 0.83 1.09 0.76 0.45

Black  − 0.70 0.32  − 2.19 0.03

Hispanic  − 0.41 0.30  − 1.39 0.16

White 0.77 0.23 3.34 8.38e − 04
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That T2D risk may decrease with greater socioeconomic 
deprivation within minority groups contradicts prevailing 
knowledge concerning socioeconomic status and disease 
burden [32–35]. Barriers to healthcare access faced by mem-
bers of minority groups may provide one possible explana-
tion for these paradoxical results. Minority racial groups in 
the USA tend to face greater obstacles when pursuing medi-
cal care, as such groups have lower levels of health insurance 
coverage and reduced quality of care, among other challenges 
[36]. Presumably, these barriers are exacerbated by socioeco-
nomic deprivation, so it may be the case that the most socio-
economically deprived members of minority groups are less 
likely to receive the level of medical care needed to receive 
a T2D diagnosis. Since our analysis relies on T2D diagnoses 
recorded in EHR, this could lower the observed T2D preva-
lence for the most socioeconomically deprived members 
of minority groups. If this conjecture is accurate, it would 
suggest that interventions are needed to expand healthcare 
access and encourage healthcare participation in socioeco-
nomically deprived minority communities.

One additional explanation for the paradoxical trends 
observed here may be that the amounts of discrimination that 
racial minority groups are exposed to are greater at higher lev-
els of socioeconomic status [37]. A previous study assessed 
the interaction effects between race, education, and educa-
tion on the release of C-reactive protein (CRP), a biomarker 
of inflammation and general stress. The results of the study 
revealed that more highly educated individuals who identify as 
Black had elevated levels of CRP compared to their less-edu-
cated counterparts. Such differences were not as pronounced 
among individuals who identify as White. These findings sug-
gest that due to higher levels of discrimination among those 
of greater socioeconomic status, better socioeconomic status 
may not strongly benefit the health of racial minority groups.

It could also be possible that, paradoxically, socioeconomic 
deprivation is a protective factor against T2D within minor-
ity racial groups. We have previously observed this phenom-
enon for an African ancestry population in Colombia, where 
those facing the most extreme forms of poverty have subsist-
ence diet and lifestyle factors that contribute to a lower risk of 
T2D [11]. Similar occurrences may be contributing to lower 
T2D prevalence among the most deprived in the All of Us 
cohort. Those on the extreme ends of socioeconomic dep-
rivation may also suffer from the most severe forms of food 
insecurity, which could contribute to a lower risk of T2D. 
Furthermore, as many social programs such as Medicaid and 
SNAP impose income cutoffs, the most deprived individu-
als may have access to medical and nutritional resources that 
moderately deprived individuals lack. A definitive resolution 
to this paradox will require further investigation.

There are several potential limitations to this study. As 
this is an observational study, a number of unobserved 
confounding variables may be present. Factors concerning 

lifestyle and diet, which are known to influence T2D risk, for 
instance, may covary with the three variables under investi-
gation—SDI, genetic ancestry, and SIRE. Furthermore, pop-
ulation biobanks are prone to volunteer bias, whereby older, 
healthier, and less disadvantaged individuals tend to partici-
pate. This has been seen for the UK Biobank, but the extent 
of volunteer bias of All of Us is currently unknown [38]. 
Finally, the definition of T2D case status used here relies on 
diagnosis codes from EHR, which could lead to imprecise 
phenotyping, with potential differences across SIRE groups 
and levels of socioeconomic deprivation.

Conclusions
In conclusion, these results provide evidence for the exist-
ence of T2D disparities in the All of Us participant cohort. 
While the T2D burden differs broadly across racial, 
genetic, and socioeconomic lines in ways previously 
reported, interactions between these variables reveal an 
unexpected interplay between genetic ancestry and socio-
economic status. The paradoxical relationship between 
socioeconomic status and T2D risk observed in Black and 
Hispanic individuals, though potentially a result of limited 
data, may reflect broader societal issues such as discrimi-
nation and inadequate access to healthcare among racial 
and ethnic minority groups. Policy interventions and 
research aimed at reducing racial health disparities may 
benefit from taking such issues into account.
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