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Opposing activities of oncogenic MIR17HG and tumor
suppressive MIR100HG clusters and their gene targets
regulate replicative senescence in human adult stem cells
Mary F. Lopez1, Ping Niu2,3, Lu Wang4, Maryann Vogelsang1, Meenakshi Gaur3, Bryan Krastins1, Yueqiang Zhao5, Aibek Smagul6,3,
Aliya Nussupbekova6, Aikan A. Akanov6, I. King Jordan4,7 and Victoria V. Lunyak3

Growing evidence suggests that many diseases of aging, including diseases associated with robust changes and adipose deports,
may be caused by resident adult stem cell exhaustion due to the process called cellular senescence. Understanding how microRNA
pathways can regulate cellular senescence is crucial for the development of novel diagnostic and therapeutic strategies to combat
these pathologies. Herein, using integrated transcriptomic and semi-quantitative proteomic analysis, we provide a system level
view of the regulation of human adipose-derived stem cell senescence by a subset of mature microRNAs (termed senescence-
associated-microRNAs) produced by biogenesis of oncogenic MIR17HG and tumor-suppressive MIR100HG clusters. We demonstrate
functional significance of these mature senescence-associated-microRNAs in the process of replicative senescence of human
adipose-derived stem cells ex-vivo and define a set of senescence-associated-microRNA gene targets that are able to elicit,
modulate and, most importantly, balance intimate connections between oncogenic and senescent events.
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INTRODUCTION
Adipose tissue is not only a storage depot for triglycerides but also
a critical functional organ regulating energy homeostasis. It is well
known that abnormal fat accumulation and function is associated
with adverse health outcomes, including obesity, type II diabetes,
cardiovascular and cerebrovascular diseases and ultimately, aging.
During adult adipose tissue homeostasis and turnover (tissue
maintenance), adipocytes are derived from adipose tissue stem
cells (ADSCs), whose origin has been traced to mural cells (also
termed pericytes) residing in the perivascular niche via a
specialized cell lineage differentiation process.1–3 ADSCs are a
type of adult stem cell of mesenchymal origin that possess many
of the traits common to bone marrow-derived mesenchymal stem
cells (BMMSCs). New adipocyte formation is critical for adult
homeostatic balance, and adipose tissue maintenance often
requires a steady replenishment of cells from stem or progenitor
sources.4, 5 However, throughout life it appears that changes in
the quantity and quality of ADSCs due to external stimuli,
specialized stem cell microenvironment, and/or intrinsic stem
cell aging processes, can influence adipose tissue metabolism,
turnover rate and regeneration and, surprisingly, also
impose restrictions on ADSC immunomodulation properties
invoked in settings such as tissue injury, transplantation and
autoimmunity.1, 2, 5–8

Robust aging-related changes in tissue maintenance are
thought to be caused by resident adult stem cell exhaustion
due to the process called cellular senescence (SEN).9–13 SEN
involves signaling, metabolic and cytoskeletal changes resulting in
the diminished ability of cells to cope with DNA damage and to

maintain the structure and function of chromatin.2, 14 Despite the
effort to uncover crosstalk between cellular signaling pathways
controlling SEN,15, 16 the full set of regulators involved in its
establishment and maintenance are not well defined, and their
complex interactions are still poorly understood.
Over the past decade, microRNAs (miRNAs) have emerged as a

new dimension of sophisticated genomic regulations in a variety
of physiological processes. Once the messenger RNA is targeted
by miRNAs, the RNA-induced silencing complex is thought to
inhibit protein production either through blocking translation or
by reducing messenger RNA stability.17–20 A given miRNA can
target a multitude of different mRNAs, and a given gene target
might similarly be targeted by multiple miRNAs. For this reason,
miRNAs frequently represent the central nodes of several
regulatory networks and may act as rheostats to provide stability
and/or fine-tuning to gene expression cascades.21, 22 Different
miRNA expression profiles were reported for various cell types
undergoing replicative SEN, such as arterial and umbilical vein-
derived endothelial cells, replicating CD8(+) T cells, renal proximal
tubular epithelial cells and skin fibroblasts,23, 24 indicating that
miRNAs might play a major role in orchestrating replicative SEN.
Some miRNAs have been reported to accelerate or inhibit the

process of adipocyte differentiation during adipogenesis, thereby
influencing the process of cellular SEN as well as impacting the
aging process in general.25–29 However, whether the altered
miRNA profile is a consequence of SEN or whether it triggers
replicative SEN is still a matter of debate. Although many methods
have been proposed for miRNA target identification,30, 31 little is
known about a specialized cohort of miRNA gene targets that can
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trigger and/or mediate senescent phenotypes and how down-
regulation in its expression is linked to restriction of proliferation
capacity, diminished DNA damage repair and severe abnormality
in the chromatin assembly generally observed upon SEN. There-
fore, a better understanding of how miRNA pathways can regulate
human adipose-derived stem cell (hADSC) SEN through their gene
targets is crucial for the development of novel therapeutic
strategies to combat the many diseases of aging, including
diseases associated with robust changes and adipose depots.
In this manuscript, we investigate the critical role of two micro-

RNA clusters, oncogenic MIR17HG and tumor-suppressive
MIR100HG, in the process of replicative SEN of human adipose-
derived stem cells (hADSCs) by using an integrated approach that
combines RNA sequencing analysis (RNA-seq) and semi-
quantitative proteomic analysis. Here, we uncover the complex
interactions among several cellular processes biologically relevant
for the state of cellular SEN. We provide functional evidence
demonstrating that the senescent state of hADSCs is achieved by
the combined action of SEN–associated miRNAs (SA-miRNAs), and
we identify a set of novel gene targets that are susceptible to
these miRNAs. Our data suggests a functional significance of these
miRNAs in the complex SEN–associated changes within human
adult adipose-derived stem cells.

RESULTS
Replicative SEN of human adult ADSCs is associated with
upregulation of a subset of non-coding RNA (ncRNAs)
Isolated hADSCs share many characteristics with BMMSCs, their
counterparts in bone marrow.32–34 Similar to other types of MSCs,
hADSCs are not considered to be immortal either in-vivo or ex-
vivo. We and others have previously reported that isolated and ex-
vivo cultured hADSCs exhibit consistent self-renewing (SR) and,
upon approaching replicative SEN (Fig. 1 and Supplementary
Figure S1A), cultures accumulate giant non-dividing cells, as
determined by incorporation bromodeoxyuridine (BrdU) into DNA
(Supplementary Figure S1B), expressing the enzyme lysosomal
pH6 SEN-associated β-galactosidase (SA-β-Gal) (Fig. 1a). SEN
hADSCs manifest a loss of control for chromatin organization,
activate a persistent DNA damage response (DDR) (Supplementary
Figure S1B and C) and manifest robust changes in transcriptional
activity.13, 35, 36 As hADSCs approached SEN, both mediators of
DDR, phosphorylated form of histone variant H2AX (γH2AX),37 and
p53 binding protein-1,38 form characteristic persistent DNA
damage foci (Supplementary Figure S1B and C). The presence of
these foci drastically increased from very rare in SR ADSCs, to
almost 90% in hADSCs approaching SEN (hADSCs) triggered by
activation of the p53/P21WAF1/Cip1 pathway (Supplementary Figure
S1B).13 In corroboration with previous reports, cluster of differ-
entiation (CD) antigen marker characterization revealed that SEN
hADSCs robustly express stromal markers CD29, CD44, CD73,
CD90, CD105 while staying negative for hematopoietic lineage
markers CD31, CD34 and CD4532 (Fig. 1b, Supplementary Figure
S2A and S2B), suggesting phenotypical stability of SEN hADSCs.
We further assessed the changes associated with replicative SEN

via transcriptome analysis (RNA-seq) and matching high-resolution
LC-MS/MS differential abundance proteome analysis, a technique
that can measure global changes in relative protein abundance
(Fig. 1a) as described in materials and methods.39, 40

Comparative transcriptomic analysis (RNA-seq) between SR and
SEN hADSCs revealed a number of ncRNAs that are upregulated
in SEN compared to SR hADSCs (Fig. 2a and b, Supplementary
Figure S3A, S3B and materials and methods). Differentially
expressed ncRNAs are identified as those that have high levels
of fold change (log2 SEN/SR) and significant differences in the
normalized number of reads (dRPKM SEN-SR) as shown in
Supplementary Figure S3B. The 216 ncRNAs upregulated upon

SEN have been identified (shown in red in the upper right quadrant
of Fig. 2a). Three out of four upregulated ncRNA loci (Fig. 2b)
encode polycistronic transcripts that could be processed to yield
multiple miRNAs (Fig. 2b): chr11:MIR100HG (encoding mir-125b1,
mir-let7a-2, mir-100), chr13: MIR17HG (encoding mir-17, mir-18a,
mir-19a, mir-20a, mir-19b-1, mir-92a-1) and chr22: MIRLET7BHG
(encoding mir-3619, mir-let7a-3, mir-4763, mir-let-7b).
Numerous studies have been done on these ncRNA loci,

reporting the potent phenotypes induced by their genetic
perturbations and by overexpression/deletion of these loci-
associated miRNAs, thus placing these genetic regions at the
center of numerous cellular and developmental pathways.41–43

MIR17HG and MIR100HG clusters and their paralogs have been
placed at the nexus of opposing activities during malignancy
development: oncogenic41, 44 and tumor-suppressive,42, 45, 46

respectively. Similarly, the MIRLET7BGH cluster has been identified
as a potent tumor suppressor and a regulator of cellular SEN,
functionally linked to neural stem cell age-related decline through
the regulation of p16(Ink4a).43, 47–49

Dynamic and differential expression of mature miRNAs from
MIR17HG and MIR100HG clusters upon replicative SEN of hADSCs
In the context of this study, we further focused on upregulation of
functionally antagonistic MIR17HG and MIR100HG miRNA-bearing
loci upon senescence. The human chromosome 13 MIR17HG
cluster (800bp) encodes six tightly grouped miRNAs with four
distinct “seed” sequences31, 50: mir-17, mir-18a, mir-19a, mir-20a,
mir-19b1, and mir-92a1 (schematically shown in Fig. 2c). The
miRNAs from this locus have been designated as onco-miRNAs
because of their importance in cell transformation and tumor-
igenesis.41, 46 The chromosome 11 MIR100HG cluster homes three
miRNAs (mir-125b1, mir-let7a-2, mir-100) situated within a
comparable genomic distance (Fig. 2d).
The miRNAs are frequently transcribed together as polycistronic

primary transcripts that are processed into multiple individual
mature miRNAs.51 To identify specific miRNA production from
these clusters in SEN hADSCs, we examined the abundance of
mature miRNAs originating from both guide strand (mir-5p) and
passenger strand (mir-3p/ mir*) by the MystiCq miRNA qPCR assay
system as described in materials and methods.
Analysis of the MIR17HG cluster has revealed that only mature

guide strand miRNAs: mir-17-5p, mir-18a-5p, mir-20a-5p, mir-19b1-
5p and mir-92a1-5p, are detected in both SR and SEN hADSCs
(Fig. 2c). No mature passenger strands: mir-17-3p, miR-18a-3p,
miR-20a-3p, mir-19b1-3p and mir-92a1-3p, have been observed in
the tested samples. Contrary to that, only mature passenger
strand miRNA for mir-19a-3p is robustly recorded by real-time PCR
(Fig. 2c). We have observed a statistically significant SEN-related
increase in production of mature miRNAs in accordance with their
corresponding primary non-coding transcripts MIR17HG: miR-17-
5p (p < 0.001), miR-18a-5p (p < 0.01), miR-20a-5p (p < 0.01), mir-
92a1-5p (p < 0.001) and mir-19a-3p (p < 0.01) (Fig. 2c and
Supplementary Figure S4A). No significant change in the mature
mir-19b1-5p has been detected upon replicative SEN of hADSCs
(Fig. 2c).
The MIR100HG cluster has given rise to two guide strand mature

miRNAs: mir-125b1-5p and mir-100-5p in SEN hADSCs. No mature
passenger strands: mir-125b1-3p and mir-100-3p have been
detected in our samples. Contrary to this notion, both guide
mir-let7a-2-5p and passenger mir-let7a-2-3p have been detected
in both SR and SEN conditions, where the balance in the stability/
maturation preference of guide mir-let7a-2-5p is shifted upon SEN,
favoring the production of passenger strand mir-let7a-2-3p
(greater than 25-fold upregulation shown in Fig. 2c and
Supplementary Figure S3A). Interestingly, this switch in the
mature strand selection for mir-let7a-2 in SEN hADSCs is not
due to an increase in AGO3 protein expression as was reported
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previously.52 The level of endogenous AGO3 protein does not
seem to change significantly with replicative SEN (Supplementary
Figure S4B).
Together, these data provide evidence that SEN of hADSCs

correlates with a dramatic upregulation of the subset of mature
miRNAs from the MIR100HG and MIR17HG clusters, and for some
of them, such as mir-let7a-2, a notable shift in the maturation
equilibrium between guide and passenger strands of miRNA has
been observed. These abundantly upregulated mature miRNAs are
called herein: SEN-associated micro RNAs (SA-miRNAs).

Identification of the gene targets of SA-miRNAs by combined
transcriptome and proteome analysis
Despite a plethora of available miRNA target prediction algo-
rithms, it remains a challenge to predict the potential target genes
of a given miRNA. A number of these prediction algorithms use
sequence, contextual, structural and/or evolutionary constraints
and rely on subsequent validation of the targets by assessment of
mRNA expression level at the large scale.53 However, transcrip-
tional analysis of miRNA target genes does not fully reveal the
extent to which miRNAs can exert control on protein expression
levels, which have a tendency to change more dramatically than
mRNA levels.31, 54, 55

Next, we have undertaken an integrated approach (illustrated in
Fig. 1, Supplementary Figure S3C, S5 and described in materials
and methods) to simultaneously explore two mechanisms by
which SA-miRNAs might exert their functional effects: (1) mRNA
degradation (Fig. 3a-left side of the cartoon), and (2) inhibition of
protein translation without triggering mRNA decline (translational
repression; Fig. 3a-right side of the cartoon).

Since we wished to relate SA-miRNAs to the downregulation of
their target genes at the level of mRNA and/or protein expression,
we have focused our analysis on SEN-downregulated mRNAs and
proteins. SEN-downregulated mRNAs are characterized as those
that have low levels of fold change (log2 SEN/SR) and the smallest
values for the difference in the normalized number of reads
(dRPKM SEN-SR). There are a total of 937 SEN-downregulated
mRNAs that have been identified in this way (shown in green in
the lower left quadrant of Fig. 3b). SEN-downregulated proteins
have been identified by comparing protein expression levels
across SR versus SEN replicate samples. There are 986 proteins
that have shown significantly lower levels of expression among
SEN replicates compared to SR replicates (shown in blue in the
lower right quadrant of Fig. 3c).
Having identified SEN downregulated mRNAs and proteins in

this way, we then applied the mirSVR prediction algorithm
(Supplementary Figure S6) to search for potential target genes
of SA-miRNAs (Fig. 2c and d) among these mRNAs and proteins
(materials and methods). The mirSVR algorithm has been chosen
because it combines multiple sources of information for miRNA
target prediction, including gene expression data from miRNA
transfection experiments, thereby allowing for a lower rate of false
positive predictions (Supplementary Methods). We have under-
taken a conservative approach to miRNA prediction by only
selecting targets with a score <−0.2. Among 8367 targets
predicted by mirSVR, 389 mRNAs, and 418 proteins have been
downregulated upon SEN of hADSCs (shown as Venn diagram in
Fig. 3d).
Collectively, the SA-miRNA target genes captured by this

approach may represent numerous biological pathways relevant
to the establishment and/or maintenance of the SEN phenotype
pathways in hADSCs.

hADSCs

passaging passaging
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Fig. 1 Schematic representation of sample collection for analysis and immunological stability of hADSCs upon replicative SEN. a hADSCs were
isolated from healthy donor subcutaneous tissue and passaged ex-vivo as described in materials and methods. Colorimetric detection of SA-β-
Gal (10x) in SR and SEN hADSCs is shown. Samples were collected and processed for transcriptomic and proteomic studies as described in
material and methods. b The table summarizes immunostability of hADSCs in SR and senescent states, which were assessed by expression of
MSC-positive and MSC-negative CD markers, details shown in Supplementary Table S3
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Validity and sensitivity of the integrated transcriptome and
proteome approach for the identification of SA-miRNA target
genes
To verify the validity and sensitivity of our integrated approach for
the identification of SA-miRNA target genes, we evaluated gene
expression of two previously established targets of mature

mir-100 from the MIR100HG locus, the HOXA1 and SMARCA5
genes.42, 56 Mir-100 directly targets these genes in mammary
epithelial cells, imposing epithelial-to-mesenchymal transition
(EMT) through downregulation of their expression (Supplementary
Figure S7A). Consistent with published findings, our LC-MS/MS
proteomic data demonstrates that the protein expression levels of
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both SMARCA5 and HOXA1 are significantly reduced upon SEN of
hADSCs (Supplementary Figure S7B) in accordance with endo-
genous upregulation of mir-100-5p (Fig. 2d). Notably, both
SMARCA5 and HOXA1 mRNA levels in SEN cells do not show
significant downregulation when compared to SR cells, thus
suggesting that mir-100-5p operates via the translational repres-
sion pathway illustrated in Fig. 3a (right panel). These findings
provide a proof-of-principle that our approach is valid and reliable
for deciphering targets of SA-miRNA action.

Destabilization of mRNA and translational repression through SA-
miRNAs upon SEN of hADSCs
Our transcriptome analysis has revealed 389 downregulated
mRNA representing SEN-associated degradation targets of SA-
miRNAs in hADSCs (Fig. 3d). Representative heatmaps of
transcriptional changes of SA-miRNA mRNA targets for individual
SA-miRNA are shown in Fig. 4a and Supplementary Figure S8A,
and their expression levels are shown in Supplementary Table S1.
Similarly, 418 out of 8367 targets predicted by mirSVR targets

have shown evidence of downregulation at the level of protein
expression based on the results of the LC-MS/MS proteomic
analysis (Figs. 3d and 5). The heatmaps of the representative
targets of the individual SA-miRNAs are shown in Fig. 5a,
Supplementary S9A and detailed in Supplementary Table S2.
Interestingly, both downregulated mRNA (Fig. 4a) and numer-

ous SA-miRNA targets associated with translation repression have
shown a trend towards a potential co-regulation by two or more
of the SA-mRNAs (Figs. 4b and 5b, Supplementary S8B and S9B).
These results, in accordance with previously reported data,
suggest that under physiological conditions many of the SA-
miRNA target genes might be subjected to concurrent regulation
by multiple co-expressing miRNAs from clusters with opposing
biological roles: oncogenic versus tumor-suppressive.31, 57 This
observation raises the following question: what function does the
targeting of mRNA by multiple miRNAs from the same cluster or
from clusters with opposing biological activity serve?

Combinatorial regulation of SA-miRNA gene targets NAP1L1,
SMARCD2 and USP6 by the miRNA from oncogenic MIR17HG and
tumor-suppressive MIR100HG clusters
To answer this question, we tested the hypothesis that co-
expression of multiple miRNAs induces stronger downregulation
of their common targets. We have focused on three SA-miRNA
target genes that exemplify the following co-targeting arrange-
ments: (1) a critical chromatin chaperone, NAP1L158 targeted by
multiple miRNAs from antagonistic MIG17HG and MIR100HG
clusters (Fig. 4b), (2) a component of the chromatin remodeling
complex, barrier to autointegration factor complex, SMARCD2/
BAF60B59, 60 targeted by a single miRNA from antagonistic clusters
(Fig. 5b), (3) a potent oncogene, USP6/TRE1761, 62 targeted by

multiple miRNAs with two distinct “seed” sequences from the
same cluster (Fig. 5b).
To demonstrate the regulatory effects of mir-let-7a-5p, 18a-5p

and mir-19a-3p, mir-19a-5p on NAP1L1, SMARCD2 and USP6
expression we performed in vitro luciferase assays (materials and
methods). For this purpose, corresponding 3′UTRs of: (1) NAP1L1
(3′UTR 2713-3062 and a portion of 3′UTR 3362-5037) shown in
Fig. 4c and d, (2) USP6 (portions of 3′UTR 6220-6895 and 3′UTR
7420-7945) shown in Fig. 5d and e, and (3) 3′UTR 1913-2438 of
SMARCD2 (Fig. 5c) genes were cloned into the pGL3-promoter
vector, immediately downstream of the luciferase gene. These
reporter constructs were transfected into 293T cells lacking
endogenous expression of mature mir-let-7p-2-3p, mir-18a-5p,
mir-19a-3p or mir-125b-5p miRNAs, either alone or in combination
with synthetic small, double-stranded RNA molecules designed to
mimic endogenous mature miRNA molecules, mimic miRNA
(Sigma, St. Louis, MO), as previously described.63, 64 To validate
our hypothesis the mimic miRNAs were transfected either alone or
in combinations as described in materials and methods and
shown in Figs. 4c, d and 5c, d, e.
We observed that luciferase activity in cells transfected with

pGL3-NAP1L1-3′UTR was significantly reduced as compared with
cells transfected with the control pGL3 vector only by mir-let-7a-5p
(47%) and mir-19a-3p (81%) as shown in Fig. 4c and d, respectively.
No significant downregulation of luciferase activeity of pGL3-
NAP1L1-3′UTR was observed when the mir-18a-5p mimic was used
(Fig. 4c); although, the mir-18a-5p mimic can efficiently down-
regulate luciferase activity of pGL3-USP6 -3′UTR (65%) in similar
experiments shown in Fig. 5e. This suggests that NAP1L1 is
efficiently targeted by mir-let-7a-3p and mir-19a-3p, but not mir-
18a-5p, which originates from the same cluster, MIR17HG. Analysis
of pGL3-SMARCD2-3′UTR revealed a similar trend and confirmed
that SMARCD2 is a target of two SA-miRNAs: mir-19a-3p and mir-
125b-5p (Fig. 5c).
In a similar experiment, we tested two composite 3′UTR parts of

the USP6 gene (Fig. 5d and e). The 3′UTR of the USP6 gene
responded with statistical significance to only one miRNA from the
MIR17HG cluster. Transient transfection of the mimic of mir-18a-5p
resulted in a 65% downregulation of luciferase activity (Fig. 5e),
while transfection of the mimic of mir-19a-3p showed no
significant change (Fig. 5d). These findings argue for the
preferential use of SA-miRNAs originating from the same cluster
for the concurrent regulation of the same genes.
We also tested the ability of pairs of miRNAs to synergistically

regulate mutual targets in order to facilitate more efficient target
repression, a phenomenon known as cooperating miRNAs.31

Although each single SA-miRNA efficiently downregulated the
NAP1L1, SMARCD2 and USP6 UTRs in transient transfection
experiments (Figs. 4c and d, 5c and d), data has shown that
simultaneous transfection of multiple micro-RNA mimics targeting
the same UTR does not increase the efficiency of target

Fig. 2 MiRNA clusters and SEN-associated miRNA (SA-miRNAs) discovered via RNA-seq analysis and experimentally validated by qPCR. a
Differential expression of non-coding RNA genes in SR versus SEN hADSCs revealed by RNA-seq analysis. Fold-change values (log2 SEN/SR) are
shown on the x-axis and RPKM differences (log2 SEN-SR) are shown on the y-axis. SEN upregulated non-coding RNA genes are shown in red
(upper right quadrant). b Genomic locations and locus names for SEN upregulated miRNA gene clusters revealed by RNA-seq analysis. c
Graphical representation of oncogenic MIR17HG locus and qPCR analysis of mature mirRNA expression in SR (blue bar) and senescent (SEN, red
bar) states of hADSCs. Relative expression of either passenger strand mature miRNAs (depicted in the graphs as -3p) or guide strand mature
miRNAs (depicted in the graphs as -5p) to U6 small RNA was measured. Data are shown as fold change (ΔΔCτ) The mean± SD from three
independent experiments is shown. The statistical difference was evaluated by Student’s t-test and P-value (p) related to experimental
measurements and are listed under the graphs, where ***p< 0.001, **p< 0.01. d Graphical representation of tumor-suppressive MIR100HG
locus and qPCR analysis of mature miRNA expression in SR (blue bar) and senescent (SEN, red bar) states of hADSCs. Relative expression of
either passenger strand mature miRNAs (depicted in the graphs as -3p) or guide strand mature miRNAs (depicted in the graphs as -5p) to
U6 small RNA was measured. Data are shown as fold change (ΔΔCτ) The mean± SD from three independent experiments is shown. The
statistical difference was evaluated by Student’s t-test and P-values (p) related to experimental measurements are listed under the graphs,
where ***p < 0.001.
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Fig. 5 Downregulation of proteins via SA-miRNA-based translational repression in SEN. a SEN downregulated proteins targeted by SEN
upregulated miRNAs. Differential protein expression is quantified by the Students’ t-test (-log10 P-values shown) as described in the electronic
supplementary materials. b Coordinated regulation of SEN downregulated proteins by multiple SA-associated miRNAs. Individual miRNAs are
shown and color-coded according to their miRNA gene cluster. c Coordinated regulation of SMARCD2 UTR by SA-miRNAs. Schematic diagrams
of the predicted target sites of SA-miRNAs in the (1913-2438) portion of SMARCD2 UTR. d, e Coordinated regulation of USP6 UTRs by SA-
miRNAs. Schematic diagrams of the predicted target sites of SA-miRNAs in the two distal portions of USP6 UTRs: a portion from 6220 to 6895
relatively to the transcriptional start site TSS (d) and a portion from 7420 to 7945 relatively to the TSS (e). Repression of luciferase reporters
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downregulation in all of the tested reporter assay combinations.
This argues against the implicit assumption that a stronger
downregulation of common gene targets could be achieved by
multiple simultaneously co-expressing miRNAs, thus leading to a
larger response of the target to miRNA perturbation.
These data suggest that the concept of miRNA cooperativity

might imply a much more sophisticated mechanism of regulation
of miRNA targets than was initially anticipated. For example,
selective, physiologically-relevant expression of cooperating

miRNAs could be adopted by cells to facilitate distinctive and
fine-tuned gene expression patterns to meet the requirements of
different biological scenarios and this phenomenon is unlikely to
be appropriately tested in transient transfection experiments.

Network-based functional enrichment analysis of SA-miRNA
targets
Since clustered SA-miRNAs are co-expressed at different levels
upon SEN in hADSCs (Fig. 2c and d), one might expect that
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they jointly regulate distinct molecular pathways not only by
co-targeting individual genes but also by targeting differential
components of the same pathways as previously shown for
Drosophila melanogaster.44, 65 With this in mind, we developed a
network-based functional enrichment analysis method to visually
elucidate the potential roles of, and interactions among,
integrated molecular networks of functionally related gene targets
of SA-miRNAs in hADSCs (see materials and methods for details on
the network analysis).
SA-miRNA targets that were found to be downregulated at the

mRNA (Fig. 4 and Table S1) or protein level (Fig. 5 and
Supplementary Table S2), were interrogated based on their
functional annotations and used to seed the network analysis.66

Four categories of particular interest have been identified as
relevant to the establishment and maintenance of the senescent
phenotype: cell cycle, chromatin, transcription/translation and
histone methyltransferases. To identify functional interactions
among the corresponding SA-miRNA gene targets from these four
categories, we then linked these genes in a network by edges that
represent known relationships between the genes based on a
variety of functional interactions, such as physical protein-protein
interactions, gene co-expression and text mining co-relationships.
Genes that do not have any direct known relationships of this kind
are transitively linked via the minimum number of possible
intermediate gene nodes, some of which are not targets of SA-
miRNAs but have been downregulated in SEN hADSCs (Fig. 6 open
circles). The intermediate nodes, which were not initially identified
as miRNA targets or downregulated upon SEN, are the so-called
Steiner nodes shown in gray in Fig. 6 and described in materials
and methods.
The network functional enrichment analysis resulted in the

elucidation of four clearly defined function-specific sub-networks,
each of which corresponds to a distinct functional category, along
with the inter-relationships between these functional groups
(Fig. 6). The coalescence of genes with the same function into
discrete sub-networks supports their close functional relationships
and tight interactions, and the statistical significance of the
functional enrichment within these groups is represented by P-
values (Fig. 6) determined via simulation of random Steiner
networks with the same number of genes from that particular
functional category as described in experimental procedures. The
P-values represent the probability of reconstructing sub-networks
of the observed sizes, or smaller, by chance; in other words, they

provide significance levels for the observed functional coherence
of the sub-network.
Considering that we started with less than 1% of the total

human genes, the large network of functionally related clustered
genes identified by this method is surprising but immediately
apparent. These data indicate that SA-miRNAs jointly regulate
molecular pathways not only by co-targeting individual genes but
also by targeting different components of the pathways that
interconnect and could be relevant to SEN of hADSCs.

Functional significance of SA-miRNAs from the MIR17HG and
MIR100HG clusters in establishment of the senescent phenotype in
hADSCs
To support our hypothesis that SA-miRNAs originating from
MIR17HG and MIR100HG clusters may coordinately regulate gene
targets that play key functional roles in the transition of hADSCs
from self-renewal to replicative SEN, we next investigated whether
transient delivery of SA-miRNAs to SR ADSCs is sufficient to cause
senescent phenotypes. Our data indicates that delivery of the
miRNA mimics of SA-miRNAs from either MIR100HG or MIR17HG
clusters separately does not result in a senescent phenotype as
detected by SA-β-Gal (Fig. 7a). And are negative for additional
SEN-associated markers such as immunostaining with anti-
P21WAF1/Cip1 antibodies (Supplementary Figure S7F and G) and
persistent SEN-associated DNA damage foci (γ−H2AX staining)
(Supplementary Figure S7F and G). FITC-labeled random RNAs
have been used as a control for the transfection efficiency in all of
these experiments. The transfection efficiency ranges from 50 to
60% (Fig. 7d). When SA-miRNAs from both clusters were
transfected into SR hADSCs, about 40% of the cells became
marked by expression of SA-β-Gal (Fig. 7a), about 98% of FITC
positive (FITC+) cells contained senescent-associated γ−H2AX
(Fig. 7b and S1B and C), marked by proliferation arrest as detected
P21WAF1/Cip1 staining and quantified by BrdU incorporation in FITC
+ cells (Fig. 7b and Supplementary Figure S1B). The senescent
phenotype can be achieved by a range of concentrations (5pM or
10pM combined SA-miRNA mimics) widely used by others in these
types of experiments (Supplementary Figure S7C).
The senescent phenotype under these conditions is similar to

replicative SEN as demonstrated by downregulation of a handful
of randomly selected genes (Fig. 7c, d and e). In SR hADSCs
transfected with a full set of SA-miRNA mimics, we observed
downregulation of endogenous mRNA from the enriched

Fig. 7 SA-miRNAs from oncogenic MIR17HG and tumor-suppressive MIR100HG clusters function to establish senescent phenotype in hADSCs.
a Percentage of SA-β-Gal positive cells among the total amount of cells counted after transient transfection of the mimics of the SA-miRNAs
from either the MIR17HG (mir-17-5p,mir-18a-5p,mir-19a-3p,mir-20a-5p andmir-92a1-5p) or the MIR100HG (mir-125b1-5p,mir-1let7a-2-3p,mir-100-
5p) clusters separately or after simultaneous transfection by a full set of the SA-miRNA mimics from both clusters in SR hADSCs. SA-miRNA
mimics were transfected with FITC-labeled control to account for the transfection efficiency as described in material and methods and
electronic supplementary materials. The transfection efficiency for each combination is shown in (Supplementary Figure S8D) and is
expressed as a percentage of green cells among the total DAPI-positive cells (n) counted under the fluorescent microscope. b Quantitation of
the BrdU incorporation in SA-miRNA mimics-transfected SR hADSCs (FITC+) 72 hrs post-transfection presented as FITC+ BrdU+ (red bar).
Quantification of cells positive for SEN-associated markers P21WAF1/Cip1 and γH2AX persistent DDR focal staining is performed under the same
conditions in FITC+ (red bars) and FITC− cells. Results were plotted on the graphs as the averages of three independent experiments
(biological replicates n= 3) with the standard deviation of data. Cell counted in each experiments: BrdU staining n1= 440, n2= 279, n3= 334;
γH2AX staining n1= 117, n2= 109, n3= 133; P21WAF1/Cip1 staining n1= 118, n2= 135, n3= 90. P-values (p) were calculated as Students’
two-tailed test: BrdU labeling experiment ***p< 0.001; γH2AX staining experiment ***p < 0.001; P21WAF1/Cip1 staining **p < 0.01. c The panels
demonstrate direct influences of SA-miRNAs on gene transcription. Expression of the direct SA-miRNA target genes was measured by qPCR
analysis in SR hADSCs (SR, blue bars) and SR cells transiently transfected with a full set of the SA-miRNA mimics (SR +miRNA, red bars). d The
panel demonstrates indirect influences of the SA-miRNAs on gene transcription. Expression of genes previously shown to be downregulated
in replicative senescent hADSCs but not identified as SA-miRNA targets was measured by qPCR analysis in SR hADSC cells (SR, blue bars) and in
SR cells transiently transfected with the full set of SA-miRNA mimics (SR +miRNA, red bars). RNA was isolated from the cells 48hrs post-
transfection. Samples were normalized against β-actin. Mean expression levels± SEM (n= 3) are shown as fold change (ΔΔCτ). e Normalized
mean protein expression levels± SEM (n= 3) in SR (blue bars) and SEN (red bars) hADSCs are shown for SA-miRNA direct and indirect target
genes. Statistical differences for the qPCR mRNA (c) and (d) and protein (e) expression comparisons were evaluated by Student’s t-test, where
***p < 0.0001, **p< 0.01, *p< 0.05.
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functional network that represents SA-miRNA target genes such as
SUZ12, NAP1L1, SMARCD2, SAP18, IGF2BP3, CHD2 and CHD4 (Figs. 6
and 7c), as well as a number of the genes not targeted by SA-
miRNAs but, nevertheless, shown to be downregulated upon
replicative SEN, such as SMARCA1, CHD8, HDAC3, HDAC5 and
HDAC9 (Fig. 7d and Supplementary Tables S3 and S4). Our
functional test suggests that even transient delivery of a full set of
mature SA-miRNA mimics in SR hADSCs is necessary and sufficient
to trigger a cascade of primary (through downregulation of SA-
miRNA targets) and secondary (downregulation of downstream
genes) events resulting in the senescent phenotype of hADSCs.
These results further support the observation that SA-miRNAs

from the MIR17HG and MIR100HG clusters with reported opposing
biological activities (Fig. 2c and d) are functionally linked to the
process of establishment of the cellular SEN phenotype in hADSCs
and identify the direct targets through which these SA-miRNAs
could exert their regulatory roles.

DISCUSSION
Cellular senescence involves a coordination of an extremely broad
range of processes from telomere homeostasis, genome instability
and DNA damage, to drastic changes in chromatin organization,
inflammatory signaling and metabolic, cytoskeletal and paracrine
changes.67 Due to the profound secretory phenotype of senescent
cells, their impact on organs and tissues is far from neutral. The
role of senescence in the aging of adult stem cells is tightly linked
to tissue maintenance and homeostasis and often viewed as an
irreversible barrier to immortalization and tumorigenesis
under the assumption that senescence evolved to suppress
tumorigenesis.68, 69 This view has been intensely debated in
recent years.70, 71 Contrary to the hypothesis that senescence and
tumorigenicity are always permanently connected and mutually
exclusive, recent data monitoring p16INK4a in mice indicate that
the activation of this hallmark of senescence is, in fact, a
characteristic of all emerging cancers,72 thus suggesting that
cellular senescence might be a quasi-stable and/or plastic cellular
state prone to cancerogenesis rather than a cancer preventive
mechanism.
It has been proposed that in addition to protein-coding

oncogenes and tumor suppressor genes, one has to take into
account miRNAs and their regulatory networks in order to
understand the complex processes underlying malignant trans-
formation.73–75 Concurrently, there is a considerable interest in the
development of senescence-targeted cancer and metabolic
therapeutics. This goal suggests the need for a system-level view
of the regulation of senescence in order to identify not only
reliable markers of senescence that will translate into human
settings, but also to understand the intimate connections between
oncogenic events and senescence better. Such approach will
allow for defining a set of genetic targets that can elicit, modulate
and, most importantly, balance mechanisms involved in tumor
initiation, growth and progression. Our study contributes exactly
to such initiative and provides measurable and reliable markers
(composing SA-miRNAs and their target genes) that can be further
deployed to identify mechanistic underpinnings of oncogenic and
tumor-suppressive balance. Such resource has not been previously
available and technically challenging to obtain.
In this study, we not only have identified a set of SA-miRNAs

originating from oncogenic MIR17HG and tumor-suppressive
MIR100HG clusters as potent controllers of complex and coordi-
nated interactions among several cellular sub-processes asso-
ciated with cellular senescence. Importantly, we have
demonstrated functional significance of these SA-miRNAs in
establishing senescent phenotype in adult adipose-derived stem
cells (Fig. 7a and b, and Supplementary Figure S7E, F and G). In
addition, our study functionally defines a set of gene-targets
regulated by these SA-miRNAs. These target genes are linked to

interconnected biological networks that control cell fate switches
and, most importantly, our data suggest that balancing of these
network components might be the cause and consequence of SA-
miRNA–target interactions. In our proposed model of the action of
SA-miRNAs, it remains unclear if forced overexpression of SA-
miRNAs in SR hADSCs has physiologically relevant consequences
and fully recapitulates the complexity of the hADSCs senescent
phenotype in the long run. However, even in transient transfec-
tion experiments, the introduction of a set of mimic miRNAs
representing SA-miRNAs produces similar to replicative SEN
transcriptional outcomes, such as miRNA-induced decay of the
direct SA-miRNA targets (Figs. 6 and 7c, e, and Supplementary
Tables S1 and S2) and an adequate downstream response
recorded as downregulation of the indirect SA-miRNA targets
(Fig. 7d and e and Supplementary Table S3). Therefore, we believe
that our approach accurately and comprehensively identifies SA-
miRNA targets as well as functionally supports the critical role of
SA-miRNAs in establishing early stages of cellular senescence. This
regulatory network of miRNAs is probably highly dynamic and
sensitive to external signaling. Recently, other methods were
developed to capture miRNA-target interactions, however, there is
still no consensus as to which approach is the most accurate and
appropriate for readout of biological function.31

While our study does not uncover the underlying molecular
mechanisms of how SA-miRNA–target interactions balance the
network, particularly when miRNA expression upon SEN originates
from the clusters with seemingly opposing biological roles in
oncogenesis, one can put forth the following hypothesis, that
similar to miRNAs and transcriptional factors that often form feed
forward loops,31, 76–78 the SA-miRNAs in hADSCs have evolved to
provide a precise target gene expression among critical SEN-
associated sub-processes, such as networks controlling cell cycle,
transcription/translation and, ultimately, chromatin assembly.70, 79

In our view, the direct effects of oncogenic SA-miRNAs on target
genes might be counter-balanced by the action of tumor-
suppressive SA-miRNAs on a set of different targets within the
same or an interconnected network, thus buffering stochastic
fluctuations73 in order to increase the precision of the expression
of the entire regulatory network.
Relevant to this discussion is an example of malignant soft

tissue tumors-rare, but aggressive malignancies. Liposarcoma is
the most common soft tissue sarcoma in adults characterized by a
high rate of local recurrence and high metastatic potential. It has
been a subject of intensive debate that the local tumor
microenvironment, cell-cell, and cell-stromal interactions are
inherent in serving biochemical functions. Malignant cells
perpetually stimulate host stromal, vascular and tissue-specific
adult stem cells to conduct physiological invasion.73, 74 Senescent
cells through their specific transcriptional programs and senes-
cence-associated secretory phenotype might create a permissive
“field” for the malignant cell to grow (reviewed in).80 On the other
hand, various secreted by the growing tumor signaling molecules,
such as cytokines, chemo-tactics and growth factors, also are can
modulate the local environment and, in their turn, can feedback
on the senescent cells (paracrine loop). Therefore, it is theoretically
possible that a shift in the delicate balance between the
oncogenic and tumor-suppressive events imposed by SA-miRNAs,
as well as transcriptional cascades targeted by these SA-miRNAs
could come to play when adipose tissue homeostasis is perturbed
in disease. To support such assumption, recent study elegantly
demonstrated that, indeed, sarcoma itself, prior to sarcoma
invasion, can impose miRNA expression changes in pre-
adipocytes and other mesechymal stromal cells through the
paracrine effectors.81 It is plausible that similar events could be
imposed on senescent ADSCs. Therefore, we speculate that the
sequence of oncogenic events that can push senescent cells into a
cancerous transformation may depend on the prevalence of
autocrine or paracrine signals, which when received by senescent
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cells can shift the balance in levels of mature miRNAs. Such shift in
the balancing act of microRNAs might enable underlying
changing in epigenetic regulation, similar to the proposed role
of the EMT and its reversal mesenchymal-epithelial transition in
controlling or avoiding cancer.70 These autocrine or paracrine
signaling upon senescence of hADSCs are subject to further
investigations.
We are aware of the argument that miRNA’s impact on

individual targets might depend on many dynamic factors,
such as cellular localization of miRNAs and their targets, their
relative concentrations, and the context-specific effects of other
regulators, including transcriptional factors and RNA-binding
proteins.82–85 Despite these arguments, the utility of our study is
in the computational and functional identification of comprehen-
sive and interconnected SA-miRNA-target regulatory networks
describing the phenotypic manifestation of hADSC- SEN. Although
cumulative studies of miRNA expression in different models of
cellular senescence suggest that miRNA signatures of senescence
are likely to be cell-type and trigger dependent with a common
core of effectors, we believe that an adequate signature of
senescence for adult adipose-derived stem cells would consist of a
number of well-established markers, among which, SA-miRNAs
and their direct targets may well be a useful addition for
assessment of adipose tissue metabolism and regeneration. The
SA-miRNAs identified in this study are particularly promising
considering that the endogenous circulating miRNAs in human
serum86 and other body fluids, such as cerebrospinal fluid,
colostrum, peritoneal fluid, saliva, seminal fluid and urine87 are
highly stable. Our study provides a matrix of potentially
measurable markers of replicative SEN in hADSCs with a viable
hypothesis that the coordinated action of these SA-miRNAs
provide for the balance between driving and restraining tumor
progression and may be further exploited to define correlations
between these senescence-associated miRNAs and other relevant
markers of disease progression as well as responses to therapeutic
treatments.

MATERIALS AND METHODS
Isolation and culture of hMSCs
Human adipose derived stem cells were isolated from human subcuta-
neous white adipose tissue collected during liposuction procedures. The
lipoaspirate was suspended in Hank’s buffered salt solution (Life
Technology), 3.5% Bovine Serum Albumin (BSA, Sigma), 1% Collagenase
Type II (Sigma) in 1:3 w/v ratio and shaken at 37 °C for 50min. The cells
were filtered through a 70 μm mesh cell strainer (BD Falcon #352350),
treated with red blood cell lysis buffer (150mM NH4Cl, 10 mM KHCO3, 0.1
mM EDTA, pH 7.3), and expanded ex-vivo in DMEM/F12 complete medium
(DMEM/F12, 10% FBS, 100 U/ml penicillin, 100 μg/ml streptomycin; Life
technology) in 10% CO2 at 37 °C and passaged at 80% confluency,
changing medium every 72–96 h. Cumulative population doublings were
calculated by summing the population doublings (PD = log(N/N0) × 3.33,
where N0 is the number of cells plated in the flask, and N is the number of
cells harvested at this passage) across multiple passages as a function of
the number of days it was grown in culture.

Surface marker characterization
Five × 105 cells either SR (PD8) or SEN (PD40) each were incubated for 30
min on ice in the dark with fluorochrome-conjugated antibodies (CD31,
CD44, CD45 and CD105; Invitrogen) in PBS with 1% BSA (Sigma), washed
and analyzed in a Guava EasyCyte Mini System (Guava Technologies,
Millipore). Data analysis was done with FlowJo software (Tree Star, Ashland,
OR).

SA-β-Gal staining
A SA-β-Gal activity assay was done according to manufacturer’s instruc-
tions (BioVision). The cells were washed with PBS and fixed with fixation
solution for 15min at room temperature. The cells were washed with PBS
twice and X-Gal staining solution was added with a staining supplement

per well and incubated overnight at 37 °C. The cells were washed twice
with PBS, and the images were captured using a microscope (Nikon, TE300,
DXM1200 Digital Camera, Japan).

Proteomic analysis and transcriptome analysis with RNA-seq
The details are given in Supplementary Experimental Procedures.

miRNA target identification
The mRNA targets of differentially expressed miRNAs were identified using
the program mirSVR. This program was chosen because it combines
miRNA-mRNA binding site sequence analysis with several additional
sources of contextual information, including gene expression data from
miRNA transfection experiments, in order to make target predictions
(Supplementary Figure S6). Accordingly, mirSVR has been shown to yield a
relatively low rate of false positive predictions for miRNA target
identification.88 mirSVR also provides scores to rank the predicted targets,
and, for this study, targets with a score <−0.2 were selected for further
analysis.

Network-based functional enrichment analysis
The details of network analysis are given in Supplementary Experimental
Procedures.

RT-PCR
Total cellular RNA was extracted from cells using the TRIzol reagent™ (Life
Technologies) according to manufacturer’s instructions. The miRNA was
isolated using a mirPremier miRNA isolation kit (Sigma-Aldrich), RNA and
miRNA were quantified with a NanoDrop ND-2000 Spectrophotometer
(Thermo Scientific). The cDNA was synthesized by adding the purified RNA
and oligo(dT) primers by using Superscript III reverse transcriptase (Life
Technologies). Primers were designed by Primer3 software and shown in
Supplementary Table S1. For miRNA cDNA synthesis, the Mystic miRNA
cDNA synthesis Mix kit (Sigma-Aldrich) was used. All miRNA assay primers
were bought from Sigma-Aldrich.

Real-time quantitative PCR
Quantification of mRNA and miRNA expression for candidate genes was
performed by real-time quantitative PCR (qRT-PCR) using the LightCycler®

480 Real-Time PCR System (Roche). Total RNA and miRNA was reverse
transcribed by using the high capacity superscript III reverse transcriptase
(Life Technologies) and the Mystic miRNA cDNA synthesis Mix kit (Sigma-
Aldrich), respectively. Primers were designed by primer3 software (Sup-
plementary Table S5). All miRNA assay primers were bought from Sigma-
Aldrich. qRT-PCR reactions were performed with the power SYBR® green
PCR master mix and the mystic miRNA SYBR green qPCR ReadyMix in a
MicroAmp optical 96-well reaction plate. The PCR amplification of total
RNA was performed in a LightCycler® 480 Real-Time PCR System (Roche)
using the following program: Cycle 1, 95 °C for 10min. Cycle 2, 40 cycles of
95 °C for 15 sec, 60 °C for 60 sec. Cycle threshold (CT) values were
automatically obtained. Relative expression values of RNA were obtained
by normalizing CT values of the mRNA genes in comparison with CT values
of the endogenous control (beta-actin) using the CT method. The PCR
amplification of miRNA was performed in a LightCycler® 480 Real-Time PCR
System (Roche) using the following program: Cycle 1, 95 °C for 2 min. Cycle
2, 40 cycles of 95 °C for 5 sec, 60 °C for 30 sec. Relative expression values of
miRNA were obtained by normalizing CT values of the miRNA genes in
comparison with CT values of the endogenous control (U6) using the CT
method.

Luciferase assay
The luciferase reporter constructs were built as previously described.63

NAP1L1-1 (350bp, 2713-3062) and NAP1L1-2 (675bp, 3362-5037) from the
3′ UTR of human NAP1L1 gene, USP6-1 (675bp, 6220-6895) and USP6-2
(527bp, 7420-7945) from the 3′UTR of human USP6 gene and SMARCD2
(525bp, 1913-2438) from the 3′ UTR of human SMARCD2 gene were
amplified using the primer sets (shown in Supplementary Experimental
Procedures). Purified PCR products were cloned into multiple cloning sites
of the pmirGLO dual-luciferase miRNA target expression vector (Promega)
downstream of the firefly luciferase gene. The primer sequences were
flanked by SacI and SalI sites to generate pmirGLO-NAP1L1-1, pmirGLO-
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NAP1L1-2, pmirGLO-SMARCD2, pmirGLO-USP6-1 and pmirGLO-USP6-2.
Details are given in Supplementary Experimental Procedures.

Mimic miRNA transfection studies
The hADSCs (SR (PD8)) were seeded on 4-well slides at a density of 1 × 104

cells/well 1 day before transfection with 5 and 10 pmol each of different
miRNA mimics to SA-miRNA using Fugene 6 (Promega). 48 h after
transfection, SA-β-Gal staining was performed according to manufacturer’s
instructions (BioVision), RNA extraction and the subsequent real-time qPCR
were performed to detect target gene expression.

Statistical analysis
Data points from individual assays represent mean ± SEM. The statistical
significance between two conditions was assessed by a two-tailed unpaired
t-test. *p < 0.05, **p < 0.01, ***p < 0.001, and n.s. represents p≥ 0.05.

DATA ACCESS
The raw data files are being passed to NCBI’s Sequence Read Archive (SRA).
Link from GEO records GSE77284 study at: http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE77284. A description of the data formats,
software tools to manipulate these data formats, and all codes
implementing the statistical models described herein can also be found
in the supplementary information on line.
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