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Simple Summary: Metastatic castration-resistant prostate cancer (mCRPC) is potentially lethal
and often spreads to the bones through a biological mechanism we do not completely understand.
A previous study sequenced RNA from patients with mCRPC, and in this study, we have identified
10 genes associated with mCRPC that spread to the bones; two of those genes are novel discoveries
that could serve as new biomarkers for diagnosis or molecular targets for treatment. However, future
studies are required to validate these genes’ molecular role in mCRPC progression.

Abstract: Prostate cancer (PCa) is the second most common cause of cancer death in American
men. Metastatic castration-resistant prostate cancer (mCRPC) is the most lethal form of PCa and
preferentially metastasizes to the bones through incompletely understood molecular mechanisms.
Herein, we processed RNA sequencing data from patients with mCRPC (n = 60) and identified 14 gene
clusters (modules) highly correlated with mCRPC bone metastasis. We used a novel combination of
weighted gene co-expression network analysis (WGCNA) and upstream regulator and gene ontology
analyses of clinically annotated transcriptomes to identify the genes. The cyan module (M14) had the
strongest positive correlation (0.81, p = 4 × 10−15) with mCRPC bone metastasis. It was associated
with two significant biological pathways through KEGG enrichment analysis (parathyroid hormone
synthesis, secretion, and action and protein digestion and absorption). In particular, we identified
10 hub genes (ALPL, PHEX, RUNX2, ENPP1, PHOSPHO1, PTH1R, COL11A1, COL24A1, COL22A1,
and COL13A1) using cytoHubba of Cytoscape. We also found high gene expression for collagen
formation, degradation, absorption, cell-signaling peptides, and bone regulation processes through
Gene Ontology (GO) enrichment analysis.

Keywords: transcriptomics; metastasis; tumor microenvironment; prostate cancer; signaling

1. Introduction

The 5-year relative survival rate for prostate cancer (PCa) decreases from >99% to 31%
once the disease has metastasized to distant sites [1]. The bones are the most common site
for disease spread for metastatic castration-resistant prostate cancer (mCRPC), suggesting
that the bone microenvironment is conducive to mCRPC growth and survival.

To date, the molecular mechanisms of mCRPC remain incompletely described. Many
studies have examined the clinical characteristics of mCRPC, especially in terms of genetic
alterations and the role of the tumor immune microenvironment (TIME) in dynamic tumor
evolution. Still, few have fully characterized the mCRPC transcriptome [2–5].
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This study captures a global picture of mCRPC cellular function and TIME-related
signaling networks in bone tissue. We analyzed mRNA expression data from the Database
of Genotypes and Phenotypes (dbGAP) using WGCNA. We critically assessed the relevance
of genes differentially expressed in mCRPC by matching clinical annotations with biological
gene functions that positively correlate with bone mCRPC through functional enrichment,
pathway, and protein–protein interaction (PPI) analyses. These results further elucidate the
biological pathways, molecular functions, and clinical events that underpin mCRPC cell
migration, survival, and bone metastasis.

2. Materials and Methods
2.1. Patient Samples and Quality Control Measures

We retrieved the raw RNA-Seq data and matched clinical annotations for 150 mCRPC
samples from the 2019 Metastatic Prostate Adenocarcinoma-Standup2Cancer/Prostate
Cancer Foundation Dream Team: Precision Therapy for Advanced Prostate Cancer study
(dbGaP Study Accession: phs000915.v2.p2). We used the SRA toolkit version 2.9.6.1 to
download data with controlled access from the Cbioportal [6] and GitHub [7].

We performed a quality control assessment on all raw sequence reads ahead of align-
ment to the human reference genome using Fastp v0.20.1 [8]. We removed bad-quality base
pairs and contaminated adaptors from the dataset and then used Fastp to check for the
presence or absence of overrepresented sequences, the guanine and cytosine (GC) percent
distribution, and the proportion of GC base pairs across all reads. Fastp scores the overall
sequence quality and overrepresentation to diagnose potential sequence quality issues.

We then mapped 269 patient transcriptomes to the human reference genome (GRCh.38.p13)
using STAR v2.7.3a [9]. We performed a quality control assessment on read alignment
using FASTQC v0.11.9 by visualization with MULTIQC v1.11 [10]. Low-quality samples,
samples possessing no matched clinical data, and RNA-Seq samples not prepared using
a hybrid selection or capture method of enrichment were filtered out and removed. Sam-
ples prepared using poly-A selection were filtered out because this method would not
detect non-coding RNAs such as miRNAs and some lncRNAs needed for future analysis;
198 samples remained.

We then filtered for duplicates/replicates to preserve the integrity of analysis. This
reduced our sample size, and 89 samples remained. Samples were originally sequenced
using Illumina HiSeq 2000. Years later, samples were re-sequenced using Illumina HiSeq
2500. For consistency, we filtered out the 20 samples that were sequenced using only
Illumina HiSeq2000 and proceeded with the samples that were sequenced using Illumina
HiSeq2500; 69 samples remained. Finally, we filtered the remaining samples for tissue sites
that had n < 10, as we needed at least 10 samples in each group to detect differences by
tissue site in our analysis. This resulted in our team proceeding with three mCRPC tissue
types (liver, lymph node, and bone).

After applying quality control and normalization measures featured in the DESeq2
package [11], we retained 60 mCRPC samples for analyzing RNA-Seq data and clinical
characteristics (Table 1). The patients’ median age was 65, and Gleason scores (GS) ranged
from 6–10, with 24 samples labeled as unknown (UNK). Four patients had a UNK hormone
therapy status. Less than half of the samples (n = 25) were exposed to abiraterone and
enzalutamide, whereas the remaining patients (n = 31) were treatment-naïve. The majority
of patients (n = 37) were treatment-naïve for taxanes. For our final study total, we only
included patient samples retrieved from single metastatic tissue sites in the bone (n = 15),
lymph node (n = 34), or liver (n = 11). Other metastatic sites were excluded due to there
being so few cases.

2.2. Normalization and Gene Expression Quantification

We used featureCounts v1.5.0-p3 to quantify counts from the RNA-Seq data and
imported that data in R Studio version 3.6.3 [12]. We normalized read counts with respect
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to library size using DESeq2 [11] and applied log2 scale transformations to minimize
differences between sample rows with <10 counts.

Table 1. Clinical data for mCRPC patient samples.

Clinical Variable Total Number

Total 60

Age Median (range) 65 (50–85)

UNK 8

Tissue Site

Bone 15

Lymph Node 34

Liver 11

Abiraterone and
Enzalutamide Exposure

(Hormone Therapy) Status

Naïve 31

Exposed 25

UNK 4

Taxane Exposure Status

Naïve 37

Exposed 21

UNK 2

Gleason Score

6 3

7 8

8 8

9 16

10 5

UNK 20
Five clinical traits serve as the variables for this study, as shown in the first column. They include age, tissue site,
hormone therapy status, taxane exposure status, and Gleason score. In the second column, taxane exposure and
hormone therapy status were recoded as binary (0 and 1, Naïve and Exposed, respectively). Gleason score was
coded as discrete values, and age was coded as continuous values. Tissue site was segmented to be binary (0 and
1). For example, bone = 0 for non-bone and 1 for bone. UNK = unknown. A total of 60 patient samples were used
in this study, as shown in the third top column.

2.3. Co-Expression Network Analysis and Module Identification

We transformed the data frame to match the WGCNA format, with samples arrayed
across rows and genes across columns. We found no gene or sample outliers that did not
pass the criteria on the maximum number of 50% or less missing or low weight values
when executing the function goodSamplesGenes(). We then uploaded gene expression
and clinical data as a matrix data table, with read count data across rows and clinical
annotations across columns. We clustered samples by expression level using signed network
connectivity with default parameters. We then produced a heatmap and dendrogram of the
sample clusters and clinical traits to visually identify any sample outliers, one of which we
removed (sampleID: SRR8311618). We segmented the resultant dataset into three matrices
that discerned gene clusters by tissue site (bone, liver, or lymph nodes). In each matrix, we
coded samples with a “1” if they were positive for the respective tissue site, whereas all
others were assigned a “0”.
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We constructed a matrix to correlate tissue sites with co-expression amongst genes in
the network. We used a manual block-wise network to facilitate WGCNA and perform
module detection. We chose an appropriate soft threshold power of β for the network
topology analysis based on the scale-free topology criterion [13]; we chose the lowest β that
crossed the R2 cut-off of 0.90 to yield an approximately scale-free topology, as measured
by the scale-free topology fitting index. For the analysis type, we used a signed network
adjacency calculation to translate the adjacency into a topological overlap matrix (TOM)
and calculated the corresponding dissimilarity as dissTOM = 1-TOM [14]. We generated
a cluster tree based on TOM dissimilarity and controlled the minimum number of genes
clustered in a module by setting minModuleSize/minClusterSize to 30 and deepSplit
to 4, imbuing high sensitivity to cluster splitting. We finally used the Dynamic Cut Tree
method to show the eigengene network heatmap and gene cluster dendrogram tree for the
14 eigengene clusters (Figures 1A and 1B, respectively).
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Figure 1. Bone eigengene network/cluster dendrogram. (A) Eigengene network and heatmap of
clustered dissimilarity based on consensus topological overlap (14 modules) and eigengene heatmap.
(B) Based on consensus topological overlap, a cluster dendrogram of clustered dissimilarity and
module colors.

We calculated module eigengenes (MEs) based on a vector of color assignments with
the same length as the number of gene rows in the data frame. The calculation is the
first principal component of the variance for all members of each respective module. We
then ranked modules by the number of genes in each module (i.e., the size). We used the
function signedkME to reassign membership to the MEs based on connectivity and the
Pearson correlation function to calculate the ME co-expression similarity. We saved the
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resultant consensus kME (eigengene-based connectivity) values and created a heatmap for
each clinical trait using the first principal component of each module (Figure 2). These MEs
were representatives of all genes in each module [14,15].
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Figure 2. Module trait relationship. Listed in the heatmap are Pearson rho correlations and p-values
(in parentheses) defining the relationship between ME expression and clinical traits. Each row in the
table corresponds to a module with the color shown on the left, and each column corresponds to a
specific clinical trait.

2.4. Enrichment Analysis, Differential Expression Analysis, and Hub Gene Identification

We used functional annotation approaches to explore the biological function of ME
genes, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses. We conducted a pathway enrichment analysis for genes co-
expressed in the cyan module (Module 14, M14), which had a high corr222-elation with
bone tissues metastases, using the Database for Annotation, Visualization, and Integrated
Discovery (DAVID version 6.8) [16]. The cyan (M14) module contained 37 genes, from
which we identified the top three highly enriched GO terms for each GO subdomain and
KEGG pathway. In Table 2, we outline a list of significant genes and signaling pathway
terms from the KEGG pathway analysis.

Table 2. Signaling pathways from KEGG pathway analysis, including pathway names, gene names,
percentage of all genes (n = 37), p-values, and Benjamini–Hochberg procedure values.

Pathway Genes % p-Value Benjamini–Hochberg
Value

Protein digestion and absorption

COL11A1
COL13A1
COL22A1
COL24A1

10.8 2.2 × 10−3 1.3 × 10−1

Parathyroid hormone synthesis,
secretion, and action

RUNX2
MMP16
PTH1R

8.1 8.6 × 10−1 8.6 × 10−1
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We adapted a method for differential gene expression analysis [5] to identify upregu-
lated or downregulated genes in the MEs and to analyze differences between the metastatic
sites. For example, Figure 3 shows differential gene expression for bone metastases versus
other metastatic sites (lymph node and liver).
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Figure 3. Differential gene expression analysis identified 3122 genes that were upregulated or
downregulated when comparing mCRPC samples with bone metastases to samples with other
metastatic tissue sites (lymph nodes and liver). Differentially expressed genes with p < 1 × 10−10

are labeled.

We constructed a protein–protein interaction (PPI) network for genes found in the cyan
(M14) module (Figure 4). For visualization purposes, we constructed a gene co-expression
network map based on the relationship and connectivity of genes using STRINGdb, a
database consisting of known and predicted protein–protein interactions [17]. We chose
genes with a score ≥0.4 to build a network model with 18 gene nodes (proteins) that we
visualized with Cytoscape version 3.9.0 [18].

We selected candidate hub genes using the Cytoscape plugin called cytoHubba [19],
which ranks nodes in the PPI network by their network features and scores each node
gene by the top 10 algorithms: Maximal Clique Centrality (MCC), Density of Maximum
Neighborhood Component (DMNC), Maximum Neighborhood Component (MNC), De-
gree, Edge Percolated Component (EPC), BottleNeck, EcCentricity, Closeness, Radiality,
and Betweenness.
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Figure 4. A Protein–protein interaction (PPI) network of statistically significant hub genes is iden-
tified, where the thickness of the edge (line) that connects associated nodes (circles) represents the
strength of association between nodes. Note that node colors have no meaning and do not represent
biological significance.

2.5. Statistical Analysis

To compare differential expression among tumor sample conditions, we performed sta-
tistical analyses using an unpaired two-tailed t-test in R Studio version 3.6.3 and considered
p < 0.001 statistically significant.

2.6. Transcriptome Deconvolution and Tissue Expression Correlation Analysis

To estimate the proportion of immune and cancer cell make-up within the TIME from
our bulk mCRPC RNA-Seq samples, we conducted bulk tissue transcriptome deconvolution
analysis using a web-based tool called EPIC. A tab-deiminated text file displaying mCRPC
samples with corresponding bulk gene expression counts given in fragments per kilobase
per million mapped reads (FPKM) was used as the input into the tool (Table S1).

Finally, we employed GTEx, a web-based tool used to calculate the correlations
between genotype and tissue-specific gene expression levels. We performed a multi-
gene query using the genes most differentially expressed in our analysis. These genes
included ALPL, CDH15, COL11A1, COL11A2, COL13A1, COL22A1, COL24A1, ENPP1,
FOXF1, ITGA10, MAMDC2, OMD, PHEX, PHOSPHO1, PTH1R, PTX3, and RUNX2. GTEx
did not have a bone tissue in their dataset for comparison, but upon comparison of our
hub genes in prostate versus other tissue sites, we observed expression levels to be lower,
on average, when compared to other tissue sites such as kidney, lung, whole blood, and
spleen (Figure 5b).
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Figure 5. Distribution of tissue cell types and gene expression levels of hub genes across various
tissue types. (a) The distribution of each cell type (B-cells, cancer-associated fibroblasts (CAFs),
CD4 T-cells, CD8 T-cells, endothelial cells, macrophages, NK cells, and tumor cells) among mCRPC
samples in the current dataset; (b) the hierarchical clustering of the diseases is shown as a dendrogram
by column. The hierarchical clustering of the select differentially expressed genes is shown as a
dendrogram by row. The center plot shows a correlation heat map of gene expression levels by
genotype-tissue expression (GTEx) profiles. Gene and transcript expressions on the GTEx portal are
shown in transcripts per million (TPM).

3. Results
3.1. Identification of Co-Expressed Genes

We studied the transcriptomics of 60 mCRPC patient samples with matched clinical
annotations. We chose the power of β = 9 (scale-free R2 = 0.90) to ensure scale independence
for the scale-free network. We performed hierarchical clustering and Dynamic Tree Cutting
to cluster co-expressed genes into modules (Figure 1).

We identified 14 modules from the construction of the eigengene network. These
modules contained ≥30 genes per module: 5444 genes in the turquoise module (M1);
2174 genes in the blue module (M2); 1670 genes in the brown module (M3); 837 genes in the
yellow module (M4); 556 genes in the green module (M5); 553 genes in the red module (M6);
385 genes in the black module (M7); 324 genes in the pink module (M8); 271 genes in the
magenta module (M9); 125 genes in the purple module (M10); 82 genes in the green-yellow
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module (M11); 77 genes in the tan module (M12); 58 genes in the salmon module (M13);
and 37 genes in the cyan module (M14).

3.2. Association of Modules with Clinical Traits

Figure 2 relates the clustered dendrogram to the matched clinical annotations, includ-
ing age, tissue site, GS, taxane status, and hormone therapy status. The cyan module (M14)
was most positively correlated with the presence of bone metastases (r = 0.81, p < 4 × 10−15).
We found that other modules were positively correlated with the GS, such as the salmon
module (M13; r = 0.37, p < 0.004), the tan module (M12; r = 0.34, p < 0.009), and the black
module (M7, r = 0.4, p < 0.002).

3.3. Differential Gene Expression Analysis

We identified 3122 differentially expressed genes in the study dataset (Figure 3). We
modeled our analysis to compare bone metastases with the other two metastatic sites, the
lymph nodes and liver. We observed seven upregulated genes (p < 1 × 10−10) within the
cyan module (M14) and one downregulated gene (FOXF1) in the yellow module (M11).

3.4. Enrichment Analysis of Biological Features

In the cyan module (M14), 23 of the 37 genes had >0.70 consensus kME values:
MAMDC2, PHOSPHO1, ITGA10, PTH1R, OMD, RUNX2, CTSK, CLMP, COL11A1, COL24A1,
SHANK1, PTX3, CDH15, PLPP7, ALPL, COL22A1, MMP16, COL13A1, ADAMTS6, SATB2,
ENPP2, EXTL1, and PHEX. Two genes (NMT1 and PSMD3) were negatively correlated
with the presence of bone metastases and thus had low connectivity of membership to the
cyan module (M14). We assessed comparisons with unpaired two-tailed t-tests and found
p < 0.001 for all.

We used DAVID for GO and KEGG pathway analyses to afford a high-level view of
the molecular signaling pathways that may drive gene co-expression in the cyan module
(M14). We divided GO results into subdomains that represented biological processes,
cellular components, and molecular functions, and we analyzed the top three GO terms for
molecular functions with p < 0.01. The cyan module (M14) genes were mainly associated
with endochondral ossification, skeletal system development, and collagen catabolic pro-
cesses. KEGG enrichment analysis identified (p < 0.001) two signaling pathways involved in
protein digestion and absorption and parathyroid hormone synthesis, secretion, and action.

3.5. Identification of Hub Genes

PPI network analysis provides protein-level context to biological processes and helps
predict the functional interactions of key genes in pathogenic molecular processes. Our PPI
network had an enrichment p-value of <1 × 10−16 and contained 18 nodes (proteins) with
31 edges. We used cytoHubba to rank the nodes by their network features. We generated a
list of ranked candidate hub genes in the PPI network using Maximum Clique Centrality as
a topological analysis method [19,20]. The top 10 candidate hub genes were ALPL, PHEX,
RUNX2, ENPP1, PHOSPHO1, COL24A1, PTH1R, COL12A1, and COL11A1 (Figure 4).

3.6. Transcriptome Deconvolution and Tissue Gene Expression Analysis

Results of our transcriptome deconvolution analysis showed a heterogenous mix of B-
cells, cancer-associated fibroblasts (CAFs), T-cells, endothelial cells, macrophages, NK cells,
and tumor cells (Table S2). Cell fractions per patient sample, on average, contained more
than 60% tumor cells, followed by CAFs (~35%) (Figure 5a). GTEx analysis was performed
to determine whether genes significantly differentially expressed in our WGCNA analysis
were highly expressed in normal prostate tissue. Results show that our selected genes were
not overexpressed in prostate tissue. However, ALPL was highly expressed in whole blood,
PTX3 in cultured fibroblasts, and PHOSPHO1 in testis, spleen, and a few other tissue types.



Onco 2023, 3 90

4. Discussion
4.1. Key Findings in the Study

WGCNA holds great promise as a tool to interrogate human transcriptome data and
elucidate molecular and signaling mechanisms for complex diseases, including PCa. In
this study, we have characterized gene expression networks that may contribute to the
heterogeneity and complexity of bone metastasis in mCRPC.

We identified 14 MEs positively or negatively correlated with age, GS, tumor site,
hormone therapy status, and taxane exposure status. The cyan module (M14) was most
positively correlated to the presence of bone metastases (R = 0.81, p-value = 4 × 10−15), and
it contained 37 genes with potential clinical value. Enrichment analysis showed biological
associations with absorption and reabsorption biological processes (e.g., endochondral os-
sification, replacement ossification, and endochondral bone morphogenesis) and signaling
pathways involved in protein digestion and absorption parathyroid hormone synthesis,
secretion, and action.

Our analyses revealed 10 hub genes with statistical correlation to bone metastasis
in patients with mCRPC: ALPL, PHEX, RUNX2, ENPP1, PHOSPHO1, PTH1R, COL11A1,
COL24A1, COL22A1, and COL13A1. Two of these genes (PHEX and PHOSPHO1) have not
been previously associated with mCRPC, while all other hub genes have some verified
association with mCRPC or PCa [21–28]. Together, our analysis showed an interplay
between the tumor microenvironment, the bone metastatic niche, and our hub genes.
Results from both EPIC and GTEx show that the tumor leverages the overexpression of
genes and associated genes to establish, maintain, and survive in an environment suitable
for its growth and further metastasis. Here, we propose a model to show the vicious cycle
of bone metastasis, driven, in part, by genes found significant in our study (Figure 6).

Onco 2023, 3, FOR PEER REVIEW  10 
 

 

4. Discussion 
4.1. Key Findings in the Study 

WGCNA holds great promise as a tool to interrogate human transcriptome data and 
elucidate molecular and signaling mechanisms for complex diseases, including PCa. In 
this study, we have characterized gene expression networks that may contribute to the 
heterogeneity and complexity of bone metastasis in mCRPC. 

We identified 14 MEs positively or negatively correlated with age, GS, tumor site, 
hormone therapy status, and taxane exposure status. The cyan module (M14) was most 
positively correlated to the presence of bone metastases (R = 0.81, p-value = 4 × 10−15), and 
it contained 37 genes with potential clinical value. Enrichment analysis showed biological 
associations with absorption and reabsorption biological processes (e.g., endochondral 
ossification, replacement ossification, and endochondral bone morphogenesis) and 
signaling pathways involved in protein digestion and absorption parathyroid hormone 
synthesis, secretion, and action. 

Our analyses revealed 10 hub genes with statistical correlation to bone metastasis in 
patients with mCRPC: ALPL, PHEX, RUNX2, ENPP1, PHOSPHO1, PTH1R, COL11A1, 
COL24A1, COL22A1, and COL13A1. Two of these genes (PHEX and PHOSPHO1) have not 
been previously associated with mCRPC, while all other hub genes have some verified 
association with mCRPC or PCa [21–28]. Together, our analysis showed an interplay 
between the tumor microenvironment, the bone metastatic niche, and our hub genes. 
Results from both EPIC and GTEx show that the tumor leverages the overexpression of 
genes and associated genes to establish, maintain, and survive in an environment suitable 
for its growth and further metastasis. Here, we propose a model to show the vicious cycle 
of bone metastasis, driven, in part, by genes found significant in our study (Figure 6). 

 
Figure 6. CRPC bone model of tumor microenvironment. Model displays the vicious cycle of bone 
metastasis driven by invading tumor cells. (1) PCa cells induce osteoblasts (OBs) to secrete RANKL. 
(2) RANKL binds to osteoclasts (OCs) and increases proliferation. (3) OCs promote increased 
resorption and pro-tumorigenic growth factors. (4) Tumor cells release PTHrP to reprogram OBs. 
(5) PCa cells release several other growth factors to promote OC proliferation and differentiation. 
Cancer-associated fibroblasts (CAFs), endothelial cells, myeloid B-cells, macrophages, T-cells, and 
other immune cell types interact with the tumor and the bone metastatic niche to promote 

Figure 6. CRPC bone model of tumor microenvironment. Model displays the vicious cycle of
bone metastasis driven by invading tumor cells. (1) PCa cells induce osteoblasts (OBs) to secrete
RANKL. (2) RANKL binds to osteoclasts (OCs) and increases proliferation. (3) OCs promote increased
resorption and pro-tumorigenic growth factors. (4) Tumor cells release PTHrP to reprogram OBs.
(5) PCa cells release several other growth factors to promote OC proliferation and differentiation.
Cancer-associated fibroblasts (CAFs), endothelial cells, myeloid B-cells, macrophages, T-cells, and



Onco 2023, 3 91

other immune cell types interact with the tumor and the bone metastatic niche to promote tumori-
genic activities. (6) PCa cells secrete factors that degrade the extracellular matrix, such as MMPs,
composed mainly of collagen. Collagen may be reshaped, remodeled, or broken down into smaller
peptides and proteins to be endocytosed via macrophages and fibroblasts to advance tumor growth,
recycle amino acids, or be used for other functions that are favorable to the TIME. (7) PCa cells
promote the overexpression of ALPL ENPP1, PHOSPHO1, and PHEX to create a favorable tumor
microenvironment. (8) FOXF1 transcriptionally regulates cancer cell invasion and migration through
the repression or silencing of the E-cadherin coding gene, CDH1. The downregulation or mutation of
the FOXF1 gene increases the expression of E-cadherins, which promotes cancer cell invasion and
motility. Created with BioRender.com.

4.2. Hub Genes Not Previously Associated with mCRPC

The PHEX gene codes for an enzyme (phosphate regulating endopeptidase homolog
X-linked) that helps regulate phosphate balance. PHEX has been hypothesized to regulate
fibroblast growth factor-23 (FGF23), which inhibits 1,25 (OH)2D synthesis and may nega-
tively regulate parathyroid hormone (PTH) secretion [29]. We are the first to report that
PHEX overexpression may be involved with the dysregulated mineralization of skeletal
tissue during mCRPC bone metastasis. We hypothesize that mCRPC cells may leverage the
PHEX function to maintain the TIME and impede wound healing in bone.

PHOSPHO1 is well known in wound healing [30] but has not been described within the
TIME for mCRPC in bone. Our study is the first to suggest that PHOSPHO1 overexpression,
enabled by ALPL and ENPP1 crosstalk, may be involved in mCRPC bone metastasis
through the dysregulated mineralization of skeletal tissue. PHOSPHO1 is an attractive
drug target, particularly for a series of benzoisothiazolinone inhibitors that have passed
medicinal chemistry criteria and pose no cellular toxicity [31], but to our knowledge, there
have been no therapeutic interventions with PHOSPHO1 inhibitors to date.

Hub genes associated with collagen (COL11A1, COL24A1, COL22A1, and COL13A1)
and protein digestion and absorption signaling were upregulated in mCRPC samples
with bone metastases. Cancer cells are known to reversibly reshape collagen to advance
progression in a reinforcing cell–collagen loop [22], and our findings support and further
resolve these molecular mechanisms. Further, research suggests that COL11A1 upregulation
is associated with decreased recurrence-free survival in PCa and could be targeted as a
prognostic biomarker [32], but we could not expand these findings as survival data were
not available in this study’s data set.

4.3. Hub Genes Previously Associated with mCRPC

The remaining hub genes (ALPL, RUNX2, ENPP1, and PTH1R) are involved in the
overexpressed pathway of parathyroid hormone synthesis, secretion, and action signaling.
A parathyroid hormone-related peptide, PTHrP, is believed to initiate bone resorption by
upregulating RANKL and releasing other growth factors that promote the vicious cycle of
bone metastasis into the bone TIME (Figure 6) [33]. The underlying mechanism remains
poorly understood. Here, we outline the possible mechanisms involved in prostate cancer
bone metastasis, driven, in part, by the hub genes.

4.3.1. ALPL and RUNX2

ALPL plays a significant role in cell death and epithelial plasticity through its as-
sociation with runt-related transcription factor 2 (RUNX2) and the receptor activator of
nuclear factor kappa-b ligand (RANKL) signaling, both of which are downstream factors
of parathyroid hormone signaling in the bone. Localized PCa cells express ALPL and
significantly upregulate the ALPL gene for metastasis [24].

RUNX2 and RANKL signaling promotes the tumorigenesis of mCRPC in bone [24,34,35].
RUNX2 overexpression increases matrix metalloproteinase (MMP) expression and the
invasion activity of the tumor, leading to PCa progression and metastasis [36,37]. The
connective tissue growth factor (CTGF) reduces the ubiquitination-dependent degradation
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of RUNX2 and promotes RUNX2 acetylation in cancer cells, stabilizing RUNX2 and thereby
increasing the production of RANKL and MMPs. If left unchecked, RUNX2 and RANKL
signaling promotes osteoclasts to engage in a vicious cycle of bone matrix resorption and
growth factor release that favors tumor growth and survival [38].

Taken together, our study further correlates ALPL and RUNX2 signaling with the
molecular signaling of RANKL and MMP, a modulation that affects the tumor cell invasive-
ness and phenotypic plasticity.

4.3.2. ENPP1

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes a transmem-
brane protein upregulated in many cancers, suppresses the innate immune response, and
promotes tumor cell migration, proliferation, metastasis, and angiogenesis [26,39]. ENPP1
inhibits pro-inflammatory cytokine production, stimulates anti-inflammatory cytokine
synthesis, and leverages two GPCR receptors (A2a A2b) to hydrolyze ATP, contributing
to increased adenosine signaling in the hypoxic tumor microenvironment of metastatic
PCa [40–42]. Our GO enrichment indicated that phosphodiesterase I activity is highly en-
riched in the cyan module, results that are supported by the ENPP1-to-adenosine signaling
axis. Researchers are currently investigating the clinical utility of ENPP1 inhibitors in many
cancers [25].

4.3.3. PTH1R

The parathyroid hormone 1 receptor (PTH1R) and calcium-sensing receptor (CaSR)
create a favorable metastatic niche in bone through parathyroid hormone synthesis, secre-
tion, and action. Yang and Wang showed that in breast cancer cells, which also metastasize
to bone, CaSR activation upregulates the parathyroid hormone-related protein (PTHrP)
and subsequently activates the Gs/cAMP pathway that furthers PTHrP production in a
“feed-forward” loop. Cancer cells release PTHrP, which binds to PTH1R in stromal cells
or osteoblasts and causes RANKL production. RANKL then binds to the RANK receptor
and spurs the maturation of osteoclasts, which reabsorb the bone matrix and release the
calcium that binds to membrane-bound CaSR on tumor cells [28]. PTHrP ablation leads to
a significant decrease in tumor growth and metastasis as well as the reduced expression of
several factors known to support tumor progression, including: CXCR4, Ki67, Bcl-2, AKT1,
and Cyclin D1 [27]. Our identification of PTH1R as a hub gene further supports its role in
forming a tumor microenvironment in bone.

4.4. FOXF1

The forkhead box protein F1 (FOXF1) gene codes for a protein that is thought to
transactivate CDH1 and upregulate the expression of the associated membrane protein, E-
cadherin. When combined with a mutated or deleted p53 gene, common in PCa progression
cases, downregulated FOXF1 may reduce E-cadherin expression and promote metastasis
by creating a survival advantage for motile and invasive tumor cells [6]. Our analysis
observed FOXF1 downregulation when RUNX2 was upregulated in patients with mCRPC
in bone.

4.5. Study Limitations

This study generates novel insights into the biological pathways associated with bone
metastasis in mCRPC. However, we used bioinformatic analysis for our study, so future
research is required to validate the role of hub genes in tumorigenesis and progression.
Furthermore, our analysis was not able to determine the direction of signaling effects.
Our characterization of signaling and pathways differences was solely assessed based on
current literature, gene ontology, and protein–protein interaction analysis. Lastly, although
the validation and replication of these discoveries are important processes that serve to
support the conclusions made in the current study, the datasets needed for the analysis of
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metastatic prostate tissue to bone are currently not available in a sample size large enough
for robust comparison.

5. Conclusions

We present a novel and comprehensive systems biology approach to further our
understanding of the molecular and biological mechanisms involved in the TIME niche
for mCRPC. We used WGCNA to construct a network and identified 14 modules, and
the cyan module (M14) was enriched with genes that were positively correlated to bone
metastasis. We discovered two novel hub genes that warrant further investigation for their
molecular role in mCRPC, especially as candidate hub genes may serve as molecular targets
or diagnostic biomarkers for precise diagnosis or cancer treatment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/onco3020007/s1, Table S1: mRNA data for EPIC; Tab delimited file
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