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Abstract

Background: Pharmacogenomic (PGx) variants mediate how individuals respond to medication, and response
differences among racial/ethnic groups have been attributed to patterns of PGx diversity. We hypothesized that
genetic ancestry (GA) would provide higher resolution for stratifying PGx risk, since it serves as a more reliable
surrogate for genetic diversity than self-identified race/ethnicity (SIRE), which includes a substantial social
component. We analyzed a cohort of 8628 individuals from the United States (US), for whom we had both SIRE
information and whole genome genotypes, with a focus on the three largest SIRE groups in the US: White, Black
(African-American), and Hispanic (Latino). Our approach to the question of PGx risk stratification entailed the
integration of two distinct methodologies: population genetics and evidence-based medicine. This integrated
approach allowed us to consider the clinical implications for the observed patterns of PGx variation found within
and between population groups.

Results: Whole genome genotypes were used to characterize individuals’ continental ancestry fractions—European,
African, and Native American—and individuals were grouped according to their GA profiles. SIRE and GA groups
were found to be highly concordant. Continental ancestry predicts individuals’ SIRE with > 96% accuracy, and
accordingly, GA provides only a marginal increase in resolution for PGx risk stratification. In light of the concordance
between SIRE and GA, taken together with the fact that information on SIRE is readily available to clinicians, we
evaluated PGx variation between SIRE groups to explore the potential clinical utility of race and ethnicity. PGx
variants are highly diverged compared to the genomic background; 82 variants show significant frequency
differences among SIRE groups, and genome-wide patterns of PGx variation are almost entirely concordant with
SIRE. The vast majority of PGx variation is found within rather than between groups, a well-established fact for
almost all genetic variants, which is often taken to argue against the clinical utility of population stratification.
Nevertheless, analysis of highly differentiated PGx variants illustrates how SIRE partitions PGx variation based on
groups’ characteristic ancestry patterns. These cases underscore the extent to which SIRE carries clinically valuable
information for stratifying PGx risk among populations, albeit with less utility for predicting individual-level PGx
alleles (genotypes), supporting the concept of population pharmacogenomics.
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Conclusions: Perhaps most interestingly, we show that individuals who identify as Black or Hispanic stand to gain
far more from the consideration of race/ethnicity in treatment decisions than individuals from the majority White
population.

Keywords: Population genomics, Pharmacogenomics, Precision public health, Genetic ancestry, Race, Ethnicity

Background
Pharmacogenomic (PGx) variants are associated with
inter-individual differences in drug exposure and re-
sponse, affecting medication dosage, efficacy, and tox-
icity [1, 2]. A number of studies have shown racial and/
or ethnic differences in drug response [3–7], based in
part on group-specific differences in the frequencies of
PGx variants [8]. A 2015 review found that 20% of drugs
approved over the previous 6 years showed response
differences among racial/ethnic groups, and these differ-
ences are often translated into group-specific prescrip-
tion recommendations that are issued on FDA-approved
drug labels [7]. Examples of such recommendations in-
clude contraindication of Rasburicase, a medication used
to clear uric acid from the blood in patients undergoing
chemotherapy, for individuals of African or Mediterra-
nean ancestry, and a toxicity warning for the anticonvul-
sant Carbamazepine in Asian patients. A higher dosage
of the immunosuppressive drug Tacrolimus is indicated
for African-American transplant patients, whereas a
lower initial dose of Rosuvastatin is recommended for
Asians. Despite the inclusion group-specific recommen-
dations in a number of drug labels, the utility of racial
and ethnic categories in biomedical research, and their
relevance to clinical decision making, remain a matter of
substantial controversy [9–12].
Critiques of the use of racial and ethnic categories in

biomedical research point to the appalling history of race
science [13–15] and stress the potential of such research
to reify outmoded notions of racial difference [16–18].
In addition, race is widely considered to be a social ra-
ther than a biological or genetic construct [19–23]. As it
relates to clinically relevant PGx variation across groups,
the extent to which racial and ethnic categories serve as
a reliable proxy for genetic diversity has also been called
into question. The authors of the recent commentary
“Taking race out of human genetics” make a compelling
case for eliminating the use of race as a category in gen-
etic research, asserting that race and ethnicity are taxo-
nomic (i.e., categorical) labels that by definition cannot
capture the full complexity of individuals’ genetic ances-
try (GA) [24]. They suggest that genetics research should
instead focus on biogeographically defined populations
and GA, as opposed to racial categories, and for this
study, we hypothesized that GA should better partition
PGx variation than race and ethnicity. We posit that GA

provides a number of advantages over racial/ethnic cat-
egories for biomedical research: (i) it can be character-
ized independently of the social and environmental
dimensions of race/ethnicity, (ii) it can be measured ob-
jectively and with precision, and (iii) it can be quantified
as a continuous variable, as opposed to categorical ra-
cial/ethnic labels. Indeed, a number of recent studies
have focused on PGx variation among populations de-
fined by GA rather than racial and ethnic groups [25–
31].
The goal of this study was to compare the relative util-

ity of self-identified race/ethnicity (SIRE) versus GA for
partitioning PGx variation among populations in the
United States (US). We focused on individuals aged 50
and older, 75% of whom take prescription medication on
a regular basis [32], and restricted our study to the three
largest racial/ethnic groups in the US: White, Black (or
African-American), and Hispanic/Latino [33]. Our study
cohort is made up of 8628 participants from the Health
and Retirement Study (HRS) [34], for whom we had
both SIRE information and whole genome genotypes.
We first compared the relationship between SIRE and
GA, characterized via analysis of whole genome geno-
type data, and we then measured the extent to which
PGx variation is partitioned by SIRE versus GA. SIRE
and GA were found to be largely concordant, and GA
provided only a marginal increase in PGx stratification
compared to SIRE. Considering this finding together
with the fact that patients’ SIRE is readily available to
healthcare providers, we subsequently focused on the ex-
tent of PGx variation between SIRE groups. We provide
a number of examples of PGx variants that are highly
differentiated among SIRE groups and discuss the impli-
cations of these findings in light of population genetics
and clinical decision-making.

Results
Self-identified race/ethnicity (SIRE) and genetic ancestry
(GA) in the US
We compared SIRE to GA for a cohort of 8628 individ-
uals characterized as part of the Health and Retirement
Study (HRS), for whom both SIRE information and
whole genome genotypes were available (Table 1). HRS
participants self-identified according to racial and ethnic
labels defined by the US Government Office of Manage-
ment and Budget (OMB). OMB defines five racial
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groups and two ethnic groups to assess disparities in
health and environmental risks [35]. HRS participants
were asked to select one or more race category and a
single ethnic designation as Hispanic/Latino or not. We
considered the race and ethnicity selections together and
focused on the three largest categories in the HRS co-
hort: non-Hispanic White (5927; 68.7%), non-Hispanic
Black (1527; 17.7%), and Hispanic/Latino of any race
(1174; 13.6%). We refer to these three groups here as
White, Black, and Hispanic. The percentages of each
SIRE group in the HRS cohort resemble the demograph-
ics of the US: White = 72.4%, Black = 12.6%, and His-
panic = 16.3% [35].
Continental ancestry profiles were inferred for mem-

bers of the HRS cohort by comparing their whole gen-
ome genotypes to whole genome sequence and genotype
data for reference populations from Europe, Africa, and
the Americas as described in the “Methods” section.

Each HRS participant was assigned European, African,
and Native American ancestry proportions, and the
resulting ancestry profiles were then clustered into three
distinct (non-overlapping) GA groups using k-means
clustering. GA groups were defined without reference to
SIRE group labels, using unsupervised clustering on con-
tinental ancestry fractions alone, and the choice to clus-
ter ancestry profiles into three groups was made to allow
for direct comparison with the three SIRE groups and in
light of known patterns of continental ancestry in the
US [36]. Permutation analysis was used to confirm the
stability of the resulting GA groups and their robustness
to changes in sample size (see Additional file 1: Figure
S1). The distributions of continental ancestry fractions
were compared for the three SIRE groups—White, Black,
and Hispanic—and the three GA groups (Fig. 1).
The three objectively defined GA groups appear to

correspond well to the SIRE groups, with respect to the

Table 1 Demographic description for the cohort used in this study

All participants White Black Hispanic

Alla 8628 (100.0) 5927 (68.7) 1527 (17.7) 1174 (13.6)

Sexa

Male 3544 (41.1) 2499 (42.2) 568 (37.2) 488 (41.6)

Female 5084 (58.9) 3428 (57.8) 959 (62.8) 697 (59.4)

Ageb 57.5 (57.0, 58.0) 60.0 (60.0, 60.5) 54.5 (54.5, 55.0) 54 (53.5, 54.0)
aNumber (percentage)
bMedian age in years (confidence intervals)

Fig. 1 Race, ethnicity, and genetic ancestry in the US. Continental genetic ancestry patterns are shown for self-identified race/ethnicity (SIRE) and
genetic ancestry (GA) groups: European ancestry (orange), African ancestry (blue), and Native American ancestry (red). HRS cohort participants are
grouped by SIRE and GA, as described in the text, and continental ancestry fractions are compared for each grouping system. Top row:
continental ancestry fractions for individuals organized into the three SIRE and three GA groups. Each column represents an individual genome,
and the three continental ancestry fractions are shown for each individual column. Middle row: ternary plots showing the continental ancestry
fractions for the SIRE and GA groups, as illustrated by the relative proximity to each of the three ancestry poles. Bottom row: average continental
ancestry percentages for the SIRE and GA groups
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distributions of individuals’ continental ancestry frac-
tions (Fig. 1—top row). GA groups 1, 2, and 3 corres-
pond to the White, Black, and Hispanic SIRE groups,
respectively. The distributions of continental ancestry
fractions for the SIRE and their corresponding GA
groups are compared in Supplementary Figure 2 (see
Additional file 1: Figure S2). Despite the apparent simi-
larity between SIRE and GA, ternary plots underscore
the broader distribution of ancestry fractions within
SIRE groups compared to the non-overlapping GA
groups delineated by k-means clustering (Fig. 1—middle
row). This is especially true for the Hispanic group, con-
sistent with the fact that it may include individuals who
identify as any race. Overall, SIRE and the GA groups
show similar average continental ancestry percentages:
White/group 1 show ~ 99% European ancestry, Black/
group 2 have ~ 82% African ancestry, and Hispanic/
group 3 show predominantly European ancestry (~ 60%)
with the highest levels of Native American ancestry
(~ 37%) and the greatest variance in continental ancestry
for any of the three groups. It should be noted that since
our study cohort did not include individuals who identi-
fied as American Indian or Alaska Native, Native Ameri-
can ancestry here does not imply any tribal affiliation or
community attachment.
The correspondence between the SIRE and GA groups

was quantified by characterizing the overlap of member-
ship assignments across the two groupings (see Additional
file 1: Figure S3). Overall, individuals’ membership in the
three SIRE and corresponding GA groups show 96.2%
concordance. The highest concordance is seen for the
White/group 1 pair, followed by Black/group 2, with His-
panic/group 3 showing the lowest concordance. The levels
of concordance vary according to which grouping system
is taken as the reference for comparison. This distinction
is most obvious for the Hispanic/group 3 pairing: 96.6% of
group 3 members self-identify as Hispanic, while only
77.1% of self-identified Hispanics fall into group 3.

Pharmacogenomic variation in the US
PGx variants that influence drug response were mined
from the PharmGKB database, and levels of PGx vari-
ation were compared within and between the SIRE and
GA groups defined for the HRS cohort. Results for SIRE
group comparisons are shown in Fig. 2, and results for
the analogous comparison of GA groups are shown in
Supplementary Fig. 4 (see Additional file 1: Fig. S4). PGx
variants show higher allele frequencies, higher allele fre-
quency differences between groups, and higher levels of
heterozygosity compared to non-PGx variants genome-
wide (Fig. 2a–c). We considered group-specific differ-
ences in PGx variation in terms of the fixation index
(FST), a commonly employed measure of population dif-
ferentiation, and effect allele frequency differences.

PGx FST and effect allele frequency difference values are
highly correlated, as can be expected, and the largest dif-
ferences are seen for the Black-White and Black-
Hispanic group comparisons (Fig. 2d–f). Notably, even
the most extreme values of FST fall well below 0.5, indi-
cating the most PGx variation is found within rather
than between SIRE groups. Nevertheless, there are 82
PGx variants that show statistically significant (FDR q <
0.05) values of allele frequency differentiation between
any individual SIRE group and the other two groups, i.e.,
their complements (Fig. 2g and Supplementary Table 2).
The significantly diverged PGx variants show an average
FST value of 0.15 compared to 0.05 for the remaining
variants (see Additional file 1: Figure S5). All-against-all
pairwise distances for HRS participants were calculated
using PGx variants and projected into two-dimensions
with multi-dimensional scaling (MDS). K-means cluster-
ing was used to create three groups based on the PGx
MDS distances, and individuals were labeled according
to their SIRE (Fig. 2h). Genome-wide patterns of PGx
variation characterized in this way show 96.1% corres-
pondence to SIRE group labels (Fig. 2i).

SIRE versus GA for partitioning pharmacogenomic
variation
Given the overall correspondence, and group-specific
differences, seen for SIRE and GA, we wanted to com-
pare the utility of SIRE versus GA for partitioning phar-
macogenomic variation in the US. Here, we asked two
questions regarding PGx variation between groups: (1)
are PGx allele frequencies correlated between SIRE and
GA groups and (2) do GA groups partition PGx vari-
ation more so than SIRE groups? The first question was
addressed by regressing PGx frequency differences be-
tween grouping systems (SIRE vs. GA groups), and the
second question was addressed by considering the devi-
ation of the regression from the unity line (i.e., the ex-
pected value under perfect correlation). As expected,
given the observed similarities between SIRE and GA
groups, PGx allele frequency differences are highly cor-
related when corresponding group pairs are compared
(Fig. 3). The highest correlation is seen when the Black
and White SIRE groups are compared to their corre-
sponding GA groups. Comparisons that include the His-
panic SIRE group show lower levels of correlation.
With respect to the second question regarding the

partitioning of PGx variation, allele frequency differences
between the Black/White SIRE groups and their corre-
sponding GA groups fall almost entirely along the unity
line; in this case, genetic ancestry does not provide any
additional information regarding PGx variation (Fig. 3a).
For both comparisons that include the Hispanic group
however, the slope of the regression is less than one,
indicating greater PGx allele frequency differences
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between GA groups compared to their corresponding
SIRE groups (Fig. 3b, c). Thus, GA does provide more
information than SIRE when ethnicity is considered, but
the effect size of this difference is small (d = 2.5% for

Black/group 2 vs. Hispanic/group 3 and d = 6.5% for
Hispanic/group 3 vs. White/group 1).
Thus far, we have shown that SIRE and GA groups are

highly concordant for the HRS cohort and that PGx

Fig. 2 Pharmacogenomic variation in the US. Genome-wide average allele frequencies (a), group-specific allele frequency differences (b), and
heterozygosity fractions (c) are shown for PGx variants (red) compared to non-PGx variants (blue). d–f Fixation index (FST; y-axis) and allele
frequency differences (x-axis) for pairs of SIRE groups. Statistically significant PGx allele frequency differences are highlighted in black. g Heatmap
showing group-specific allele frequencies for significantly diverged PGx variants. h Multi-dimensional scaling (MDS) plot showing the relationship
among individual genomes as measured by PGx variants alone. Each dot is an individual HRS participant genome, and genomes are color-coded
by participants SIRE. i The correspondence between SIRE groups and PGx groups defined by K-means clustering on the results of the MDS
analysis. Data shown here correspond to SIRE groups; analogous results for GA groups are shown in Supplementary Figure 4 (see Additional file
1: Figure S4)
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allele frequency differences are similar for both classifi-
cation systems. Since SIRE labels are routinely collected
as patient provided information and are also readily
available as part of electronic health records, we focused
on PGx variation between SIRE groups to explore the
potential clinical utility of race and ethnicity. We wanted
to know whether PGx effect allele frequency differences
of the magnitude observed here have any utility for guid-
ing medication prescription decisions in light of the fact
that the majority of PGx variation is found within rather

than between SIRE groups. We considered the odds ra-
tios for the apportionment of PGx risk alleles among in-
dividual SIRE groups and their complements as an
indicator of SIRE groups’ predictive utility, given that
odds ratios are widely used to associate categorical risk
factors with health outcomes [37]. We also computed
absolute risk increase values to account for the popula-
tion frequency of PGx risk alleles when considering the
magnitude of between group differences as well as the
accuracy with which SIRE group membership predicts

Fig. 3 Self-identified race/ethnicity (SIRE) versus genetic ancestry (GA) for partitioning pharmacogenomic (PGx) variation. a–c Regression of
pairwise PGx variant effect allele frequency differences calculated using SIRE (y-axis) versus the corresponding GA groups (x-axis). Results of two
statistical tests are shown for each of three pairwise group regressions. Test 1 evaluates whether SIRE and GA PGx allele frequencies are
correlated, and test 2 evaluates that amount of additional resolution on PGx variant divergence that is provided by GA compared to SIRE. Details
on each test are provided in the text

Table 2 Examples of highly differentiated PGx variants. This table lists some examples of highly diverged PGx variants in the three
SIRE groups under consideration. In the table, “Ref. Pop.” refers to reference population, OR refers to odds ratios, and ARI refers to
the absolute risk increase percentage. Values in brackets specify the 95% confidence intervals for each computation

Effect allele frequency

rsID Drug Effect White Black Hispanic Ref. Pop. OR ARI Accuracy

rs1045642 Fentanyl Dosage 0.78 0.37 0.70 White 3.26 (2.96, 3.60) 26.1 (24, 28) 68.5 (67.0, 69.9)

rs9934438 Warfarin Dosage 0.38 0.83 0.33 Black 8.27 (7.18, 9.54) 45.93 (44, 48) 66.53 (65.03, 68.03)

rs2884737 Warfarin Dosage 0.27 0.04 0.18 Black 8.99 (7.43, 10.87) 36.0 (34, 38) 52.5 (50.5, 54.5)

rs2500535 Nortriptyline Efficacy 0.05 0.06 0.26 Hispanic 6.1 (5.40, 6.82) 20.3 (18, 22) 85.2 (84.6, 85.9)

rs11615 Platinum compounds Efficacy 0.37 0.88 0.64 Black 9.90 (8.85, 11.09) 45.95 (45, 47) 63.5 (62.4, 64.6)

rs20455 Atorvastatin Efficacy 0.36 0.79 0.40 Black 14.2 (11.11, 18.17) 35.71 (34, 37) 50.01 (47.9, 52.1)

rs1048943 Capecitabine, docetaxel Efficacy 0.04 0.02 0.27 Hispanic 12.74 (11.14, 14.79) 39.4 (37, 42) 87.3 (86.5, 88.1)

rs4646450 Tacrolimus Metabolism 0.16 0.84 0.33 Black 66.80 (49.17, 90.88) 63.15 (62, 65) 71.5 (70.2, 7.2)

rs6977820 Antipsychotics Toxicity 0.04 0.28 0.05 Black 14.8 (12.13, 18.14) 45.96 (44, 48) 60.09 (58.4, 6.1)

rs1801394 Methotrexate Toxicity 0.46 0.72 0.67 White 2.82 (2.63, 3.02) 24.68 (23, 26) 59.40 (58.2, 60.1)

rs16969968 Nicotine Toxicity 0.66 0.95 0.80 Black 8.17 (6.97, 9.59) 26.6 (26, 28) 43.17 (41.4, 44.9)
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PGx alleles or genotypes. Detailed results for all PGx
variants analyzed here can be found in Supplementary
Table 3.
Examples of highly differentiated PGx variants are

shown in Table 2 and Fig. 4. These examples were
chosen as variants that had relatively high odds ratio
values across different PGx effect types (dosage, efficacy,
metabolism, and toxicity), highlighting instances for each
of the three SIRE groups. The relative percentages of
PGx effect (above) and non-effect (below) alleles across
SIRE groups reveal the extent of differentiation for these
variants (Fig. 4a), and the observed allele frequency dif-
ferences are associated with SIRE group-specific contin-
ental ancestry fractions (Fig. 4b–d). Nevertheless, as
described above and shown in Fig. 2, even highly differ-
entiated PGx variants show levels of FST that indicate
substantially more within than between group variation
(see pie charts in Fig. 4b–d). Despite the relatively high
levels of within group PGx variation, these variants show
high group-specific odds ratios and substantial absolute
risk increase values. In other words, HRS cohort mem-
bers’ racial and ethnic self-identities carry substantial in-
formation that can be used to stratify pharmacogenomic
risk at the population level. However, the accuracy levels
with which group affiliations predict specific risk alleles
or genotypes are only marginally high, indicating that
SIRE has relatively less utility for individual-level risk
prediction compared to risk stratification.
For example, the A allele of the PGx variant

(rs1045642) in the ATP Binding Cassette Subfamily B
Member 1 (ABCB1) gene is associated with a decreased
fentanyl opioid dose requirement [38] (Fig. 4b). This
PGx variant has a dominant mode of effect, such that
patients with either the AA or GA genotype tend to
metabolize fentanyl slower than patients with the GG
genotype and will therefore require a lower dosage.
96.0% of variation for this PGx variant is partitioned
within SIRE groups compared to 4.0% variation between
groups. However, the dosage-associated genotypes are
far more common in individuals who identify as White
(OR = 3.3, CI = 3.0–3.6; ARI = 26.1%, CI = 24.0–28.3%),
and from the ancestry association plot, it can be seen
that the effect allele (A) is highly correlated with Euro-
pean genetic ancestry (β = 0.20, P = 1.95e−35). Self-
identification as White predicts dosage-associated geno-
types with 68.5% accuracy.
Similarly, a PGx variant (rs2500535) in the Uronyl 2-

Sulphotransferase (UST) gene has been found to be as-
sociated with the efficacy of nortriptyline—an anti-
depressant—in patients with major depressive disorder
[39] (Fig. 4c). This PGx variant has a dominant mode of
effect; patients with the A allele are associated with a de-
creased improvement of depression symptoms when
prescribed nortriptyline. These lower efficacy genotypes

are more common in individuals who identify as His-
panic. Even though the variation at this genomic site is
far higher within (93.5%) compared to between (6.5%)
groups, the odds ratio for having risk-associated geno-
types is high for the Hispanic population (OR = 6.07,
CI = 5.44–6.82) along with a high absolute risk increase
(ARI = 20.3%, CI = 18.5–22.2%). Hispanic ethnicity pre-
dicts nortriptyline efficacy-associated genotypes with
85.2% accuracy.
Another PGx variant (rs6977820) found in the Dipep-

tidyl Peptidase Like 6 (DPP) gene has been associated
with adverse response to antipsychotic drugs (Fig. 4d).
This PGx variant has an additive effect mode, whereby
the T allele is positively correlated with African ancestry
and associated with tardive dyskinesia among schizo-
phrenia patients treated with antipsychotics [40]. When
individuals that self-identify as Black are compared to
the other two SIRE groups, most variation at this variant
is found within (85.9%) rather than between (14.1%)
groups. However, the odds ratio for the presence of the
risk allele for adverse reaction to antipsychotics is high
(OR = 7.7, 95% CI = 7.1–8.49), as is the absolute risk in-
crease (ARI = 47.2%, 95% CI = 45.4%–48.9%), consistent
with a substantially elevated risk of adverse drug reac-
tion for the Black SIRE group compared to the others.
Individuals who self-identify as Black can be predicted
to have the effect-associated allele with 73.0% accuracy.

Clinical value of pharmacogenomic stratification by SIRE
We quantified the clinical utility of SIRE for partitioning
PGx variation by comparing the ability to predict PGx
effect alleles/genotypes before (pre) and after (post)
stratification of the population by SIRE. The approach
we used is equivalent to the comparison of pre- and
post-test probabilities for diagnostic tests, where the test
in this case is patient stratification by SIRE. For any
given PGx variant, the pre-test probability is the overall
population prevalence of the PGx effect allele/genotype,
and the post-test probabilities are the group-specific
positive predictive values (PPVs) for the PGx effect allele
or genotype. Allele counts were used to compute these
probabilities for PGx variants that show an additive ef-
fect mode, and genotype counts were used for the dom-
inant effect mode. The absolute difference of the pre-
and post-test probabilities calculated in this way was
taken as a measure of the amount of information that is
gained, with respect to PGx variant prediction for each
specific group, when SIRE is used for patient stratification.
When highly differentiated PGx variants (Figs. 2g and 4)

are analyzed in this way, the SIRE groups that show the
highest effect allele frequencies for any given variant pro-
vide substantial additional information for PGx prediction.
Considering the PGx variant (rs2500535) that is associated
with nortriptyline efficacy (Fig. 4c), stratification by
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Fig. 4 (See legend on next page.)
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Hispanic identity yields an additional 14 individuals, for
every 100 patients to be treated, who are predicted to
show decreased improvement of symptoms related to de-
pressive disorder. The information gain is even more ex-
treme for the PGx variant (rs6977820) that is associated
with antipsycohtic toxicity (Fig. 4d). For this variant, strati-
fication of individuals that self-identify as Black will yield
an additional 39 out of every 100 patients that are
counter-indicated for the antipsychotic medications owing
to toxic side effects. The overall levels of information
gained via stratification by SIRE differ widely by group. In-
dividuals that self-identify as Black show the highest levels
of information gain for PGx variant prediction followed
the Hispanic and White groups, respectively (Fig. 5). This
pattern can be attributed to the relative numbers of

individuals in each SIRE group together with the extent of
genetic diversification seen between groups. The relatively
high frequency of PGx effect alleles (Fig. 2a) also contrib-
utes to the amount of information gain observed here,
given the fact that PPVs depend on the prevalence of the
condition that is being tested (i.e., the presence of PGx ef-
fect alleles/genotypes).

Discussion
Concordance between SIRE and GA in the US
The SIRE and GA groups from the US analyzed here
show > 96% overall concordance (Fig. 1, also see Add-
itional file 1: Figures S2 and S3). It must be stressed that
these results only apply to the three major racial/ethnic
groups covered by the ~ 8600 individual HRS cohort;

(See figure on previous page.)
Fig. 4 Examples of highly differentiated pharmacogenomic (PGx) variants. a SIRE group percentages of effect (above axis) versus non-effect
(below axis) alleles/genotypes are shown for six highly differentiated PGx variants. Allele counts are used for the additive PGx effect mode, and
genotype counts are used for the dominant effect mode. b, c The extent of within versus between group variation, ancestry associations, and
PGx stratification/risk by SIRE groups are shown for three examples. Ancestry associations relate the ancestry fractions for individuals that bear
distinct PGx genotypes: European (orange), African (blue), and Native American (red). Effect (blue) versus non-effect (gray) allele/genotype counts
are compared for the group enriched for a specific PGx variant compared to the other two groups. Allele counts are shown for the additive PGx
effect mode, and genotype counts are shown for the dominant mode. Group-specific allele/genotype counts were used to compute odds ratios
and absolute risk increase values (risk stratification) along with group-specific prediction accuracy values (risk prediction) as shown

Fig. 5 Information gained when SIRE is used for PGx stratification. The amount of information gained per 100 individuals is the number
additional correct PGx variant predictions made when SIRE is used to stratify the population. Information gain is calculated for all PGx variants in
each SIRE group, as described in the text, and the group-specific distributions are shown as density distributions and box-plots (inset): White
(orange), Black (blue), and Hispanic (red)
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nevertheless, the concordance between SIRE and GA
seen for the HRS cohort is very much consistent with a
number of previous studies of the US population. In
2005, investigators showed a 99.9% concordance be-
tween SIRE and genetically derived clusters for 3636 in-
dividuals from four racial/ethnic groups [41], and a 2007
study reported 100% classification accuracy of individ-
uals from geographically separated population groups
when thousands of genetic variants were used for clus-
tering [42]. More recently, a study of > 11,000 cancer pa-
tients from The Cancer Genome Atlas found an 95.6%
concordance between self-reported race (not ethnicity)
and GA [43], and a study of > 200,000 individuals from
the Million Veterans Program found > 99.4% concord-
ance between SIRE and GA [44]. The latter two studies
relied on machine learning classifiers powered by vectors
of 7 and 30 ancestry principal components, respectively,
whereas our clustering algorithm uses vectors of only
three continental ancestry components to classify indi-
vidual genomes. Additionally, the distribution of GA
fractions observed here for the HRS cohort SIRE groups
is consistent with previous studies [36, 45–48]. Taken
together, our results and others underscore the extent to
which continental ancestry patterns can distinguish SIRE
groups in the US.
Genetic differences accumulate among populations

when they are reproductively isolated, and isolation by
distance [49] best accounts for the apportionment of hu-
man genetic diversity among global populations [50].
Populations that are physically distant, or separated by
major geographic barriers, are more genetically diverged
than nearby populations [51]. It follows that the appear-
ance of population structure, i.e., distinct clusters of gen-
etically related individuals, can represent an artifact of
uneven sampling of human populations at extremes of
distance [52]. For instance, isolation by distance can ex-
plain much of the apparent genetic structure observed
for major genome sequencing projects such as the 1000
Genomes Project [53, 54] and the Human Genome Di-
versity Project [55, 56]. Conversely, when human popu-
lations are sampled more evenly across a range of
distances, and in the absence of major geographical bar-
riers, genetic diversity appears to be continuously dis-
tributed as a cline of variation [57, 58].
Isolation by distance can be taken to explain the con-

cordance of the SIRE and GA groups observed for the
HRS cohort, since the three major US SIRE groups are
made up of individuals with ancestry from continental
population groups—European, African, and Native
American—that were isolated at great distances for tens-
of-thousands of years before coming back together over
the last 500 years [36, 45]. Since each SIRE group con-
tains distinct patterns of continental ancestry, they cor-
respond well to objectively defined clusters formed

based on the partitioning of GA (Fig. 1, also see Add-
itional file 1: Figure S2 and S3). In addition, despite the
fact that these population groups are currently co-
located within the US, assortative mating stands as an
ongoing reproductive barrier among groups [59, 60] (but
see below for an important caveat regarding this fact). It
is nevertheless important to note that most of the SIRE
and GA groups analyzed here are not composed of indi-
viduals with highly coherent ancestry patterns. Only the
White/cluster 1 groups show coherent ancestry patterns,
whereas the Black/cluster 2 and Hispanic/cluster 3
groups are made up of individuals that vary along a
range of continental ancestry fractions (Fig. 1 and see
Additional file 1: Figure S2). This is especially true for
the Hispanic group, consistent with the fact Hispanic is an
intentionally broad label that covers individuals from dif-
ferent races and with very distinct ancestry patterns [61].
An important caveat with respect to the high concord-

ance between SIRE and GA observed here relates to the
age of the individuals in the HRS cohort (Table 1). We
chose to focus on older Americans given their dispro-
portionate use of prescription medications [32], and
HRS recruited participants aged 50 and over starting in
1992. The average age of the HRS cohort analyzed here
is 57.5 years (CI 57.0–58.0), and all of the study partici-
pants were born before 1965, when there were still
“anti-miscegenation” laws in nineteen states [62]. Rates
of intermarriage among SIRE groups have increased sub-
stantially since that era [63], and as admixture continues
to increase over time, the ancestral coherence of SIRE
groups is expected to fall precipitously. Increased rates
of immigration, coupled with the arrival of more globally
diverse immigrant groups, will also blur boundaries be-
tween SIRE groups, potentially rendering the current la-
bels clinically uninformative. Indeed, the most widely
used SIRE labels in the US are mandated by the OMB,
and they will likely be revised in the near future to better
capture the increasing diversity of the US population. As
such, the clinical relevance of SIRE will almost certainly
decrease over time.

Within versus between group genetic divergence
It has long been appreciated that the vast majority of hu-
man genetic variation is found within rather than be-
tween populations. This fundamental result was first
reported for worldwide racial groups, based on analysis
of a handful of (surrogate) genetic markers [64], and has
since been confirmed by numerous studies of popula-
tions defined by GA using larger-scale analyses [55, 65–
69]. The distinction between this fundamental result and
the high concordance seen for SIRE and GA, as well as
the ability to cluster human population groups at various
levels of relatedness, can be explained by the difference
between univariate methods for variance partitioning
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versus multivariate classification methods [70, 71]. The
analysis of PGx variation reported here is univariate,
since we focus on the apportionment of variation for in-
dividual PGx variants, and we confirm that the majority
of PGx variation is found within the HRS cohort groups
(Figs. 2 and 4).
We used a standard evidence-based medicine analyt-

ical framework [37, 72] in an effort to understand the
clinical relevance of PGx variation that is partitioned
among SIRE groups in this way. In particular, we asked
how the observed PGx differences between groups could
be clinically relevant when the majority of variation falls
within population groups, even for the most divergent
variants found here. Despite the observed pattern of
within versus between group PGx variation, we found
numerous cases of high odds ratios and high absolute
risk increases for the group-specific prevalence of PGx
variants (Table 2 and Fig. 4). In other words, member-
ship in any given SIRE group can entail substantially
greater odds, and far higher risk, of carrying clinically
relevant PGx variants compared to members of other
groups. Information of this kind should be an important
consideration for clinicians charged with making treat-
ment decisions and could also be of value for well-
informed patients.
Finally, it should be emphasized that humans are far

more similar than they are different at the genomic level,
both within and between population groups. As of Au-
gust 2019, there were 674 million annotated single nu-
cleotide variants among the ~ 3 billion sites in the
human genome [73]. Thus, more than 75% of genomic
positions are conserved among all human population
groups, and for those positions that do vary, the majority
are rare variants that segregate at < 1% frequency world-
wide [54]. Nevertheless, the results reported here under-
score the potential clinical relevance for those genetic
variants that do show relatively high levels of between-
group divergence.

Caveats and limitations
It is important to note that in this study, we measure the
frequency of PGx variants across different SIRE and GA
groups, rather than drug response differences per se.
Even though the penetrance of PGx variants is generally
high [2], clinical interpretations of variant frequency dif-
ferences should be considered in light of variable pene-
trance levels as well. In cases of low penetrance, the
magnitude of drug response differences between groups
will be dampened. Furthermore, if PGx variants have dif-
ferent magnitudes of effect for different groups, i.e.,
group-specific effect sizes, then differences in drug re-
sponse cannot be directly inferred from PGx variant fre-
quency differences alone. However, since the majority of
PGx variants are causative protein-coding variants [2],

the likelihood of group-specific effect sizes is far lower
than would be expected for non-coding variants discov-
ered by genome-wide association studies, which are typ-
ically tag markers that are linked to nearby causative
variants. Finally, the focus on single nucleotide variants
(SNVs) is another limitation of the study, given the fact
structural variants and multi-variant haplotypes have
also been associated with inter-individual drug response
differences. Nevertheless, the vast majority of PGx vari-
ants annotated in the PharmGKB database are SNVs [2],
suggesting that our analytical approach captures most of
the known variant-drug associations.

Conclusions
The current and future utility of race and ethnicity in
pharmacogenomics
As previously noted, demographic trends in the US sug-
gest that the clinical relevance of SIRE, including its pre-
dictive utility for PGx variation, is expected to
continuously decrease over time. The increasing adop-
tion of routine genetic testing for precision medicine
could also render SIRE obsolete for stratifying PGx vari-
ation [74]. This is because genotyping of specific PGx
variants will obviously provide far more accurate risk
prediction than SIRE. For example, even a highly diver-
gent PGx variant, like the antipsychotic toxicity associ-
ated variant rs6977820 (Fig. 4d), will yield a mis-
prediction of the PGx risk allele 27% of the time if SIRE
alone were used as a predictor. In this sense, the high
group-specific PGx odds ratios and absolute risk in-
creases observed in this study are best considered as sur-
rogate guides to inform the optimal choice of prescribed
medication, rather than precise diagnostic tools. In other
words, SIRE categories provide valuable information for
stratifying PGx risk at the population level but not for
predicting individual-level PGx variants. Having said
that, and despite the promise of population-scale gen-
omic screening initiatives and biobanks [75], such as the
NIH All of Us project [76], the day when all Americans
will have ready access to their genetic profiles remains
far in the future. Unfortunately, this is likely to be even
more so for minority communities that are vastly under-
represented among clinical genetic cohorts [77, 78].
Until that time, SIRE will remain an important feature
for clinicians to consider when making treatment
decisions.
Perhaps most importantly, the current utility of SIRE

is most apparent for groups who are underrepresented
in biomedical research. Individuals who self-identify as
Black or Hispanic stand to gain far more information
with respect to precision treatment decisions than those
who identify as White (Fig. 5). This finding can be at-
tributed to the relative frequencies of individuals in each
of the three SIRE groups analyzed here, which closely
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mirror the current demography of the US, and the ex-
tent of genetic divergence among groups. If a “one size
fits all” approach to drug prescription is used, patients
who identify as White are more likely to receive the
most appropriate treatment, since their PGx variant fre-
quencies will be closest to the overall population mean.
Conversely, individuals who identify as Black or Hispanic
have the most to lose if SIRE is not considered when
making treatment decisions.

Methods
Study cohort
Self-identified race and ethnicity (SIRE) information and
whole genome genotypes for Americans over the age of
50 and their spouses were collected as part of a nation-
ally representative longitudinal panel study called the
Health and Retirement Study (HRS) [34]. For the current
study, only HRS participants with both SIRE and geno-
type information were considered (8912 participants).
The 284 participants who did not identify with one of
the three largest racial/ethnic categories in the HRS
data—non-Hispanic White (5927), non-Hispanic Black
(1527), and Hispanic/Latino of any race (1174)—were
excluded from this analysis. This yielded a total of 8628
individuals in our final analysis cohort.

Genetic ancestry (GA) analysis
HRS participants were previously genotyped at ~ 2,381,
000 genomic sites using the Illumina Omni2.5 BeadChip
[34]. Whole genome genotype data from HRS partici-
pants were compared to reference populations from Eur-
ope, Africa, and the Americas in order to infer their
continental genetic ancestry patterns as previously de-
scribed [45] (see Additional file 1: Table S1) [54, 56, 79].
Reference populations were taken from (i) the 1000 Ge-
nomes Project (648) [54], (ii) the Human Genome Diver-
sity Project (110) [56], and (iii) 21 Native American
populations from across the Americas (90) [79]. A cus-
tom script that employs PLINK version 1.9 [80] was
used to harmonize the HRS and reference population
variant calls. The variant call data were merged by iden-
tifying the set of variants common to both datasets, with
strand flips and variant identifier inconsistencies cor-
rected as needed. The initial merged and cleaned variant
data set was filtered for variants with > 1% missingness
and < 1% minor allele frequency among samples. The
final harmonized genotype data contains 228,190 gen-
omic sites. The harmonized genotype dataset was phased
using ShapeIT version 2.r837 [81]. ShapeIT was run
without reference haplotypes, and all individuals were
phased at the same time. Individual chromosomes were
phased separately, and the X chromosome was phased
with the additional “-X” flag.

A modified version of the RFMix program [45, 82] was
used to characterize the continental genetic ancestry
patterns for the HRS participants, with European, Afri-
can, and Native American populations used as reference
populations. RFMix was run in the “PopPhased” mode
with a minimum node size of five, using 12 generations
and the “—use-reference-panels-in-EM” for two rounds
of EM, to assign continental ancestry for haplotypes
genome-wide. Contiguous regions of ancestral assign-
ment, “ancestry tracts,” were created where RFMix an-
cestral certainty was at least 95%, and genome-wide
continental ancestry estimates for HRS participants were
obtained by averaging across confidently assigned ances-
try tracts.
Non-overlapping genetic ancestry (GA) groups were

defined from individual participants’ continental ances-
try estimates obtained via RFMix analysis using k-means
clustering implemented in the Python package Scikit-
learn [83] with k = 3. Each participant was represented
as a point in three-dimensional (3-D) space, parameter-
ized by their three continental ancestry fractions. For-
mally, the position of a participant (i) in this genetic
ancestry space was defined by (Ei, Ai,Ni), where Ei, Ai,
and Ni are the European, African, and Native American
ancestry fractions. K-means clustering using Euclidean
distances between all pairs of individual participants in
this 3-D genetic ancestry space to yield three non-
overlapping clusters. Given that k-means clustering can
be unstable, the algorithm was run on these data 100
times and the most probable group membership was
assigned to each participant. This method allowed us to
define three non-overlapping groups of HRS participants
informed entirely by their genetic ancestry and free from
the social dimensions of SIRE.
The association between GA and PGx variant geno-

types was measured using our previously described
method [25]. To obtain the strength of association (β)
between continental ancestry proportions and genotypes,
continental ancestry fractions were regressed against the
observed PGx variant genotypes. Formally, the genetic
ancestry fraction y = βx + ε, where x ∈ {0, 1, 2} refers to
the number of PGx variant effect alleles. The signifi-
cance of these ancestry associations was quantified using
a t test.

Measurement of PGx variation
Single nucleotide variants (SNVs) associated with pharma-
cogenomic response—i.e., PGx variants—were mined
from the Pharmacogenomic Knowledgebase (PharmGKB)
[2]. This online database is a source of manually curated
clinical variant annotations for PGx variants and their as-
sociated drug-response phenotypes. Data on the chromo-
somal locations of PGx variants, the identity of PGx effect
(risk) alleles, PGx variants’ mode of effect (additive or
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dominant), clinical annotations, and clinical evidence
levels were parsed and taken for analysis. A total of 2351
PGx variants were accessed from PharmGKB, 989 of
which were genotyped for the HRS cohort. Only directly
genotyped PGx variants were used for analysis.
PharmGKB annotates the specific effect alleles that are as-
sociated with inter-individual differences in drug dosage,
efficacy, metabolism, and toxicity. The direction of effect
(higher or lower) is specific to individual PGx variants for
dosage, efficacy, and metabolism whereas toxicity effect al-
leles always correspond to increased toxicity.
PGx allele frequencies for SIRE and GA groups were

computed as the group-specific counts of effect alleles
normalized by the total number of typed individuals for
each group. Pairwise between group fixation index (FST)
values for each variant were computed by calculating
two components: (i) the mean expected heterozygosity

within subpopulations, HS ¼ 1
2

X

i

2ðpiÞð1 − piÞ�

ð counti
total count

Þ , where pi is the frequency of risk allele in

population i, counti is the number of individuals in
population i, and total count refers to the total number
of individuals in both populations, and (ii) the expected
heterozygosity in the total population, HT ¼ 2ðpÞð1 − pÞ,
where p is the mean effect allele frequency in both popu-
lations under consideration. The fixation index was
computed by combining the two computed metrics as

FST ¼ 1 − HS
HT

[84]. PGx variants were used to calculate

pairwise inter-individual distances for all HRS partici-
pants using PLINK, and the resulting distance matrix
was projected into two dimensions using multi-
dimensional scaling (MDS) with the mds function in R.
K-means clustering of the participants in MDS space
was used to generate three non-overlapping PGx variant
groups in the same way as described for the GA groups.
Odds ratios (ORs) were calculated for group-specific

PGx effect allele counts [37]. In a contingency table for
the counts of effect allele in population PA with the four
values: PE (effect allele count in PA), PN (non-effect allele
count in PA), QE (effect allele count in non-PA individ-
uals), and QN (non-effect allele count in non-PA individ-

uals), this was done using the formula OR ¼ PE=QE
QN=QN

, with

confidence intervals calculated as CI = exp(log(OR) ±

Zα/2 × SElog(OR)), where α is 0.05, Zα/2 is 1.6, and S

E logðORÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
PE
þ 1

PN
þ 1

QE
þ 1

QN

q
. Similarly, using group-

specific PGx effect counts the absolute risk increase

(ARI) was calculated as ARI ¼ PE
PEþPA

− QE
QEþQA

, with confi-

dence intervals calculated as CI = ARI ± Zα/2 × SEARI,
where α is 0.05, Zα/2 is 1.96, and SEARI ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PEPA þ QEQA

p
[72]. Group-specific genotype predic-

tion accuracy values were calculated as Accuracy = (TP +
TN)/(TP + TN + FP + FN), where TP is true positives,
TN is true negatives, FP is false positives, and FN is false
negatives. TP, TN, FP, and FN designations are assigned
based on the SIRE group that shows enrichment for PGx
effect allele (or genotype). The presence of the PGx ef-
fect allele in the implicated SIRE group is counted as a
true positive, whereas its presence in the other groups is
counted as a false positive. Conversely, the presence of
the PGx non-effect allele in the implicated SIRE group is
counted as a false negative, whereas its presence in the
other groups is counted as a true negative. Accuracy

confidence intervals are calculated as CI ¼ Accuracy

�Zα=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Errorprediction

1 − Errorprediction
=N2

q
, where Errorprediction

¼ FPþFN
TPþTNþFPþFN and N = TP + TN + FP + FN. As noted

before, when α is 0.05, Zα/2 is 1.96.
Pre- and post-test probabilities were compared in

order to compute the amount of information gained per
100 individuals based on PGx stratification with SIRE.
For any given PGx variant, the pre-test probability is cal-
culated as the overall population prevalence of the PGx
effect allele (additive mode) or genotype (dominant
mode): Prevalenceoverall = CountEA/CountTotal, where
CountEA is the count of the effect allele/genotype in the
cohort and CountTotal is the total count of alleles/geno-
types at that locus in the cohort. The post-test probabil-
ity is calculated as the group-specific positive predictive
values (PPVs) for the PGx effect allele or genotype. PPV
is calculated as follows: PPVA ¼ CountAEA=Count

A
Total ,

where CountAEA is the count of the effect allele/genotype
in population A and CountATotal is the total count of al-
leles/genotypes at that locus in the population A. Infor-
mation gain is then calculated as: InfoGainA = ∣ PPVA −
Prevalenceoverall∣.

Comparison of SIRE and GA
To test whether PGx variant allele frequencies were cor-
related between SIRE and GA, pairwise PGx variant al-
lele frequency differences calculated for SIRE groups
were regressed against allele frequency differences calcu-
lated for GA groups. Here, the null hypothesis is H0 :
β = 0, while the alternate hypothesis is HA : β ≠ 0. The
significance of this correlation was testing using a t test
where t = (βobs − βexp)/SE and P = P(TDF ≤ βexp). Next, we
tested whether GA groups partition PGx variation more
than SIRE groups using the same regression. For this
test, the null hypothesis is H0 : β = 1, while the alternate
hypothesis is HA : β < 0. An underlying assumption for
this one-tailed test is that GA groups should hold more
information about PGx allele frequency differences when
compared to SIRE groups. We calculated the difference
in the expected (unity line) and observed (SIRE versus
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GA) regression slopes, d = (βexp − βobs)/2 to quantify the
magnitude of the effect. A denominator of 2 was chosen
to reflect the entire range of possible slopes that the data
may take—going from −1, where SIRE groups reflect
exactly the opposite difference in allele frequencies, to 1,
where SIRE groups faithfully and completely capture the
allele frequency differences observed in GA groups. The
statistical significance was tested using a t test as de-
scribed above.
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