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Over the last several years, analyses of ever-accumulating human genome sequence data have made it possible to understand the
relationships within and between populations. Evaluating population structure and historical demography can be approximated
by a complex web of connections, i.e., a network. This is because, as human populations emerged from Africa, they experienced
repeated periods of divergence when they were physically separated followed by convergence (or admixture) when they came back
together. Admixture, once considered to be a fairly new aspect of human evolution (owing to the development of intercontinental
travel), is increasingly recognized as a common feature that has repeatedly occurred throughout our evolution (Jeong et al., 2019;
Lipson et al., 2018; Lorente-Galdos et al., 2019; Reich et al., 2009; Sikora et al., 2019).

This reticulate model of evolution is in stark contrast with the strictly bifurcating perspective held by traditional evolutionary
biologists who modeled evolutionary history as a tree—a framework that implicitly forbade the interaction of isolated and
differentiated branches. Historically, evolution was visualized as a tree where branches became more and more differentiated over
time. Early popularization of this interpretation can be seen from Ernst Haeckel's “Tree of life” where he describes universal
common descent of all organisms (Fig. 1A and B). This view has now evolved and adapted as new data have become available
following which the field is moving toward more complex schemes that can accommodate hybridization (Fig. 1C). Contrary to a
tree model where a node can only have one parent, current evolutionary biologists are using different network-based frameworks
to include recent and ancient admixture to assess population history.

Different network architectures can be used to answer specific questions about the histories of populations. For the purposes of
this review, we will be focusing primarily on Directed Acyclic Graphs (DAGs) with a few examples of undirected graphs. DAGs are
good proxies for modeling relationships between different populations as they can reliably represent relationships between
different groups in a temporal fashion. As it is impossible for a population to interact with an ancestral population directly–they
can only interact with descendants of an ancestral population in the same temporal space–these relationships can be represented
faithfully using DAGs. Fig. 2 shows the use of DAGs in representing population histories. U represents an ancestral population that
splits into two populations groups U0 and U00 by time T1 as a result of isolation. By time T2, U0 splits into two different populations
A0 and B0, while U00 changes into D0 simply as a result of the passage of time. During the same temporal slice, we see that B0 and D0

admix to form population C0 in proportions a and 1 � a, respectively. At time T3, C0 results in population C, while A0 becomes A,
an un-admixed community of B0 becomes B and a part of D0 becomes D. It should be noted that individuals from population B0

could not have interacted with individuals from either U0 or U00 because they exist in different periods of time.
Networks and trees are currently used to answer the following questions:

1. Inferring population closeness—Evaluating which populations in a given set are more similar.
2. Inferring admixture—Assessing whether a particular population descended from multiple ancestral populations.
3. Inferring demography history—Exploring how different populations interact and split to form modern populations.
4. Inferring population structure—Identifying population membership and relationships based only on individual-level data.

The first two approaches in the list above are often inferred using population phylogenies or population trees. These popu-
lation phylogenies are models where populations are assumed to be related in a tree-like fashion. The branch lengths in these trees
corresponds to the extent of genetic differentiation. Three different tree-based statistics to evaluate population closeness were first
described by Reich et al. (Reich et al., 2009) and later refined and expanded upon by Patterson et al. (Patterson et al., 2012).
Collectively, these methods are called f-statistics. Several authors have commented and helped expand upon the interpretations of
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Fig. 1 Different views of evolution. (A) A traditional view of evolution which emphasizes a universal common descent for all living organisms
(Ernst Haeckel). (B) A simple bifurcating tree. (C) A reticulate tree with admixture.
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Fig. 2 Schematic showing population divergence and admixture.
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Fig. 3 Visualizing f-statistics. f-statistics can be visualized as branch lengths in population phylogenies. The relevant branch length is highlighted
in red. (A) Shows a population phylogeny for F2, (B) and (C) show population phylogenies for calculating F3, and (D) represents a population
phylogeny required for calculating F4.
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the statistics, most notably in (Peter, 2016; Harris and DeGiorgio, 2017). These statistics are calculated under population
phylogeny models—which refers to a null model where populations are related in a tree-like fashion.
Inferring Population Closeness

In the original description by Reich et al. (Reich et al., 2009), a distinction is made between empirical quantities called F2, F3, and
F4, while the overall statistics are denoted by f2, f3, and f4, respectively. The empirical measurements (F2, F3, and F4) can be
understood as branch lengths for two, three, and four populations, respectively for a specific topology calculated for a single
biallelic marker. These are then averaged over multiple markers to get different f-statistics. The branch lengths can be visualized as
shown in Fig. 3.
Genetic Drift Calculation

The f2 statistic can be used to measure the magnitude of genetic drift that has occurred between two populations. We can define
genetic drift simply as a change in allele frequency of polymorphisms in the two populations being considered. For a given
biallelic genetic marker, F2 is defined as:

F2 P1;P2ð Þ ¼ F2 p1; p2ð Þ ¼ E p1 � p2ð Þ2� �

where, p1 and p2 are the allele frequencies of a single biallelic marker in populations P1 and P2, respectively. The final f2 statistic
can be computed by averaging the F2 values at hundreds of thousands of biallelic polymorphisms across the genome. Since F2 is
interpreted as branch length, there is an additivity property implicit in the definition.

F2 P1; P2ð Þ ¼ F2 P1; P0ð Þ þ F2 P2; P0ð Þ
In most modern population genomic analyses, several populations (on a scale of tens to hundreds) are tested to understand

and infer closeness and admixture. A simple way of achieving this is to use the f2 statistic as a score of dissimilarity. All pairwise f2
statistics can be computed to obtain a dissimilarity matrix following which a best-fit tree can be obtained. However, the process of
obtaining a best-fit tree can be challenging, especially as the number of populations and branches increases. To counter this, the F3
and F4 tests provide convenient alternatives that provide simpler tests of closeness that are restricted to trees of size 3 and 4 (for F3
and F4, respectively).
Identifying Related Populations

F3 can be seen as a metric that evaluates the shared portion of the branch from population P1 to P3 and population P2 and P3
(Fig. 3B). Formally, F3 is defined as:

F3ðP3; P1;P2Þ ¼ F3ðP3;P1; P2Þ ¼ E p3 � p1ð Þ p3 � p2ð Þ½ �
where, p1, p2, and p3 are the allele frequencies of a single biallelic marker in populations P1, P2, and P3, respectively. F3 can also be
expressed in terms of F2:

F3 P3;P1; P2ð Þ ¼ 1
2

F2 P3; P1ð Þ þ F2 P3;P2ð Þ � F2 P1;P2ð Þð Þ

The equation above can be extended to interpret F2 as any distance metric which can then be used in the different inter-
pretations of F3.

A simple application of f3 is to identify the most closely related population from a given set for an unknown population PX.
This was demonstrated in (Raghavan et al., 2014), where the authors used the length of the common branch to identify the most
closely related extant population for a new sample discovered in Mal’ta, South-Central Siberia. As can be seen in Fig. 3C, if f3 is
calculated for all populations in a given set while keeping the outgroup (P2) and unknown population (P1) fixed while cycling
through the test populations (P3 in the figure), the largest f3 value for F3(Outgroup; Unknown population, Test population) will help
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identify the closest test population for the unknown population. This is also called “outgroup f3.” This statistic is used in recent
literature to calculate shared genetic drift (Sikora et al., 2019; Tambets et al., 2018; Yang et al., 2017). In a recent publication by
Sikora et al. (2019), the relationship of three ancient samples and their genetic relatedness to modern-day populations. The
statistic points toward a close relatedness between ancient Paleo-Siberians with present-day populations of the Itelmen, Koryaks,
and Chukchis, along with Native Americans.
Inferring Admixture

The usual goal for employing f3 is to test whether population P3 is admixed. For this interpretation, the null hypothesis is that f3 is
a positive number–the underlying hypothesis being that the data have been generated from a tree that has positive edge lengths. If
f3 is negative, the null hypothesis is rejected and is seen as evidence for admixture. The null model is structured like Fig. 3C. This
test is often called the ‘three-population test’ in literature. Several publications use f3 statistics to support their claim of detecting
admixture events (Brucato et al., 2018; Haber et al., 2019; Wang et al., 2019). Recently, Haber et al. (2019) use the f3 statistic to
assert that present-day Lebanese Muslims were a result of admixture between Medieval Lebanese, African, and Central/East Asians.

A natural extension of the f-statistics we’ve seen so far is F4, which can be formalized as:

F4ðP1;P2; P3;P4Þ ¼ F4ðp1; p2; p3; p4Þ ¼ E p1 � p2ð Þ p3 � p4ð Þ½ �
where, p1, p2, p3, and p4 are the allele frequencies of a single biallelic marker in populations P1, P2, P3, and P4, respectively. Like F3,
F4 can also be written in terms of F2:

F4 p1; p2; p3; p4ð Þ ¼ 1
2

F2 P1;P4ð Þ þ F2 P2;P3ð Þ � F2 P1;P3ð Þ � F2 P2;P4ð Þð Þ

The f4 statistic can be used to evaluate if there is a shared path between 4 different populations, thereby testing whether an
unrooted tree with two distinct clusters–(P1, P3) and (P2, P4) in Fig. 3D. If there is no overlap in the drift between members of the
two clusters, the f4 statistic will be 0 (as in the case of F4(P1,P3; P2,P4)), indicating that they do not share a recent or significant
population history.

The f4 statistic is a powerful tool for inferring admixture, especially when coupled with the f3 statistic. On identifying a
significantly non-zero value for a given topology, common ancestry for the two clusters can be inferred without knowing the
direction of admixture. Questions about the direction of admixture can be directly addressed by employing the f3 statistic. Many
recent publications have used the f4 statistic to understand the demographic history of populations (Lorente-Galdos et al., 2019;
Haber et al., 2019; Wang et al., 2019).
Inferring Introgression

For one of the last tree-based methods covered here, we talk about Patterson's D-statistic or the ABBA-BABA test (referred to as the
D-statistic going forward) first described in (Green et al., 2010) to test introgression between modern humans and Neanderthals.
This test is a powerful test for a deviation from a strict bifurcating evolutionary history.

Simply put, two closely related populations are expected to share almost the same amount of derived alleles with a third similar
population, i.e., if populations P1 and P2 are closely related and P3 is a similar population, then the number of derived alleles
shared by P1 and P3 but not in P2 and the number of derived alleles common to P2 and P3 but not P1 should be approximately the
same. However, if there was any introgression between P3 and P1 it would lead to an asymmetry in the shared derived alleles. This
expectation forms the basis of the D-statistic. To get information about ancestral and derived alleles, a fourth population
P4–which is a common outgroup to all three populations under consideration—is included. This is represented in Fig. 4. The test
is formally defined as:

D¼ CountABBA � CountBABA
CountABBA þ CountBABA

where ABBA refers to a condition where the derived allele is shared by populations P2 and P3, while BABA refers to a situation
where the derived allele is shared by populations P1 and P3. The D-statistic can range from � 1 in a case of extreme introgression
P1 P2 P3 P4

Fig. 4 Schematic for D-statistic calculation.
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between P2 and P3 to 1 in case of introgression between P1 and P3. A value of 0 indicates no introgression. This simple yet
powerful approach is often used to detect signatures of introgression (Racimo et al., 2015; Mondal et al., 2016; Feldman et al.,
2019). A recent publication by Feldman et al. (Feldman et al., 2019), uses the D-statistic to understand the genetic affinity of
Anatolian hunter gatherers with other European hunter-gatherer populations to find that the non-basal Eurasian ancestry of
ancient Anatolians was derived from a gene pool related to a largely homogeneous gene pool of Later European hunter-gatherers
referred to as the “Villabruna cluster.”

It should be noted that even though the methods discussed above use tree-based phylogenies to model population histories,
the test only work because of the reticulate and complex nature of human evolutionary history. The null hypothesis for each of
these tests is that our evolutionary history is tree-like.
Inferring Demography History

From the different tests we’ve seen so far, it is safe to assert that population groups exchange genes by the process of admixture and
simple bifurcating trees are an incorrect representation of the history of a population. To address this, TreeMix (Pickrell and
Pritchard, 2012) is an algorithm that accounts for population splits and gene flow while inferring population history. It estimates a
maximum likelihood graph based on allele frequencies in sampled populations. The tool optimizes migration weights and branch
lengths first, and then searches for optimal graphs.

In the original publication describing TreeMix, the authors demonstrate the tool with two examples – one with human
populations and another using dog genomes. For studying human migrations, they used data for 55 modern and archaic human
populations from the HGDP (Harvard HGDP-CEPH genotypes) (Cavalli-Sforza, 2005). In doing so, they found some unexpected
inferences: (1) that about 16% of Cambodian ancestry can be traced back to a population that is equally related to both Europeans
and other East Asians, and (2) an inferred admixture event between the Mozabite (a Berber population from Northern Africa) and
southern European populations. They further explored these surprising findings and were able to confirm their findings with the
Cambodian population and were able to conclude that the present-day Cambodian population was founded by an admixture
event involving southeast Asian populations related to the Dai (Southern China) and a Eurasian population that are only distantly
related to present-day populations. However, their findings with the Berber group was not consistent across independent runs of
TreeMix. Following this, they interpret these results as pointing to complex patterns of gene flow between northern Africa, southern
Europe, and the Middle East.

The group behind TreeMix also used 82 dog breeds or wild canids. Their results are consistent with the known history and
genetic bottlenecks known in the establishment of certain dog breeds. One example of this is an inference that bull mastiffs are a
result of admixture between bulldogs and mastiffs (which is a known event). However, the group does clarify that on examining
the residuals from the model, they found a number of populations that do not fit a strict tree model–saying that the tree model
explained 94.7% of the variance in relatedness between breeds, somewhat less than between human populations.

TreeMix is frequently used to infer migration and admixture histories in human populations. In a 2012 publication (Meyer
et al., 2012), the authors use this approach to infer genetic exchange between Denisovans and present-day Papuans. More recently,
a 2018 publication (McColl et al., 2018) employs this method to infer the prehistoric genetic exchanges that shape Southeast
Asia today.
Inferring Population Structure

In a situation where group membership needs to be evaluated for different individuals, their genomic data can be used to
unambiguously cluster them into coherent groups whose membership is dictated by genetic features. This approach is a marked
departure from the other model-based approaches discussed in this text since it does not rely on an underlying model (and its
associated assumptions) to investigate population structure. There are some examples in the literature that use this model-free
approach to infer population structure.

An algorithm called NetView (Greenbaum et al., 2016) for evaluating population structure using an undirected network of
pairwise genetic similarity of all sampled individuals. This densely connected network is then partitioned using community-
detection algorithms. These communities (or densely connected subgraphs) can be equated with population structure.

The algorithm can be equated with other model-free approaches like Principal Component Analysis (PCA) in that it uses
genetic distance (or similarity) to model distances between individuals. However, the network-based algorithm facilitates
community-detection in a quantitative fashion—something that is not afforded to researchers using PCA without performing
additional analyses.

Using NetView, its authors were able to cluster individuals sampled from global populations into different clusters using
varying thresholds. Using a low edge-removal threshold, the authors were able to separate African individuals from non-African
individuals. On using a medium edge-removal threshold, they were able to distinguish African, Indo-European, and East Asian
populations, and upon using a high edge-removal threshold, they were able to distinguish populations from Africa, Europe,
India, China, Japan, and Mexico. For readers familiar with PCA analysis of global human populations, these results will be
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intuitive–however, this network-based method partitions the data without the need for manual/clustering-based partitioning
following a traditional PCA.

Another way of using networks to model relationships between individuals is by using Identity-by-Descent (IBD) as similarity
metric. This method uses shared haplotypes as a similarity metric compared to absolute similarity used in NetView. This allows for
the detection of closer familial structures and pedigrees in the data. This was first proposed and demonstrated in (Gusev et al.,
2012). Haplotype-sharing networks were also employed for detecting population structure is demonstrated in a study published
by AncestryDNA (Han et al., 2017).

In conclusion, it can be asserted that simple non-reticulate, bifurcating trees are inadequate for modeling evolutionary rela-
tionships and that more complex network-based models are needed to understand the deeply convoluted history of a species. The
literature discussed here does exactly that and has been seminal in improving our understanding of human evolutionary history.
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