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Uniparental genetic markers, mitochondrial DNA (mtDNA) and Y chromosomal DNA, are widely used for the in-
ference of human ancestry. However, the resolution of ancestral origins based onmtDNAhaplotypes is limited by
the fact that such haplotypes are often found to be distributed across wide geographical regions. We have ad-
dressed this issue here by combining two sources of ancestry information that have typically been considered
separately: historical records regarding population origins and genetic information on mtDNA haplotypes. To
combine these distinct data sources, we applied a Bayesian approach that considers historical records, in the
form of prior probabilities, together with data on the geographical distribution ofmtDNA haplotypes, formulated
as likelihoods, to yield ancestry assignments from posterior probabilities. This combined evidence Bayesian ap-
proach to ancestry assignment was evaluated for its ability to accurately assign sub-continental African ancestral
origins to Afro-Colombians based on their mtDNA haplotypes. We demonstrate that the incorporation of histor-
ical prior probabilities via this analytical framework can provide for substantially increased resolution in sub-
continental African ancestry assignment for members of this population. In addition, a personalized approach
to ancestry assignment that involves the tuning of priors to individualmtDNAhaplotypes yields even greater res-
olution for individual ancestry assignment. Despite the fact that Colombia has a large population of Afro-
descendants, the ancestry of this community has been understudied relative to populations with primarily
European and Native American ancestry. Thus, the application of the kind of combined evidence approach devel-
oped here to the study of ancestry in the Afro-Colombian population has the potential to be impactful. The formal
Bayesian analytical framework we propose for combining historical and genetic information also has the poten-
tial to be widely applied across various global populations and for different genetic markers.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The desire to trace one's family ancestry and origins, i.e., the study of
genealogy, is an ancient human impulse (Potter-Phillips, 1999). People
have sought to uncover their family lineages via the interrogation of
written historical records for millennia. Early examples of genealogy
based on written historical records include the documentation of phar-
aonic dynasties in Egypt, the interrogation of epic poems in Greece and
Biblical accounts of Christ's descent from Abraham. The field of geneal-
ogy was revolutionized within the last 25 years by the application of
genetic, DNA marker-based methods to genealogical investigations
(Fitzpatrick and Yeiser, 2005; Aulicino, 2013). DNA sequences have
the potential to provide accurate, unbiased and sensitive markers for
chromosomal DNA.
Building, Georgia Institute of

ordan).
the discernment of relationships among family members and for the
assignment of individual ancestral origins. Genetic approaches to
genealogy have been particularly attractive to communities of Afro-
descendants in the Americas, who have often lacked access to the
same level of detailed historical records that are available to other immi-
grant populations (Gates Jr., 2010).

To date, genetic genealogy has been dominated by studies of mito-
chondrial DNA (mtDNA) and Y-DNA sequences (haplotypes) (Cann
et al., 1987; Stumpf and Goldstein, 2001; Jobling and Tyler-Smith,
2003; Pakendorf and Stoneking, 2005). Studies of mtDNA and Y-DNA
haplotypes afford a number of advantages for genetic genealogy: they
are sex-specific markers that allow for the distinct characterization of
female (mtDNA) and male (Y-DNA) lineages, they do not recombine
allowing for straightforward and tractable delineation of ancestral line-
ages and relationships among groups of lineages, and they show geo-
graphical differentiation providing for localization of ancient ancestral
origins. The large databases of mtDNA and Y-DNA haplotypes that
have accumulated over the years have provided for steadily increasing
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resolution for ancestry assignment (Shriver and Kittles, 2004; Congiu
et al., 2012).

Nevertheless, the use of these uniparental markers for genealogical
studies also has important limitations. Since thesemarkers capture single
– female ormale –unbroken ancestral lineages, they only represent a tiny
fraction of any individual's genetic ancestry. Indeed, it has recently been
shown that levels of continental ancestry, based on analysis of autosomal
DNA sequences, can vary widely for individuals with the same mtDNA
haplotype (Emery et al., 2015). Another unresolved issue with the use
of suchmarkers relates to the level of resolution that they afford for local-
ized ancestry assignment. While they do show high levels of continental
differentiation, uniparental markers can be broadly distributed across dif-
ferent sub-continental geographic regions. Thus, it may not be possible to
unambiguously localize ancestral origins using such markers. This has
been shown to be the case for African–Americans (Salas et al., 2005;
Stefflova et al., 2011). Despite claims to be able to trace individual's ances-
try to precise locations in Africa using mtDNA analysis, it was shown that
mtDNA haplotypes in many cases can only be assigned to broad geo-
graphic regions in the continent (Salas et al., 2004).

Increasingly, historians and genealogists are recognizing the utility
of a synthetic approach to the study of human ancestry that combines
information gleaned from historical records with results based on the
analysis of genetic markers. This combined evidence approach could
provide for substantially increased resolution in ancestry localization
for cases where genetic approaches only yield broad geographic assign-
ments. Historical information could also be combined with genetic
information at the population level to increase confidence in genetic-
based ancestry assignments for individuals who lack access to reliable
historical records. However, there currently exists no formal analytical
framework for the integration of historical and genetic data in the
study of genealogy. Here, we present a Bayesian analytical approach
for the combination of population-level historical records with genetic
marker data for the assignment of individual ancestry. We show that
this combined evidence approach provides for substantially increased
Fig. 1.African ancestral origins of theAfro-Colombian population. The three primary geographic
demographic information.
resolution over a genetics-only approach and demonstrate the utility
of tuning historical information to distinct genetic profiles.

We evaluated the potential of our combined evidence Bayesian
framework for the study of African ancestry in the Colombian popula-
tion. Colombia has an ethnically diverse population with high levels of
admixture between African, European and Native American ancestral
populations (Bryc et al., 2010; CIA, 2014). There is a large population
of ~5 million Afro-descendants in Colombia, making up N10% of the
total population. Afro-Colombians include individuals who self-
identify as Black (African), Mulatto (Black/African and European) and
Zambo (Black/African & Amerindian). Despite a number of studies on
the genetic ancestry of Colombians (Carvajal-Carmona et al., 2000,
2003; Bedoya et al., 2006; Wang et al., 2008; Cordoba et al., 2012),
there have been few such studies on the Afro-Colombian population.
The Bayesian approach applied here combines historical records of
trans-Atlantic slave voyages with genetic data on the geographic distri-
bution of mtDNA haplotypes in Africa to provide for increased resolu-
tion of ancestry inference in this understudied population.

2. Material and methods

2.1. Historical and molecular anthropological datasets

Historical data on the African ancestral origins of the modern Afro-
Colombian population, compiled from records of trans-Atlantic slave
voyages, were taken from the literature (Maya Restrepo, 2005;
Rodriguez, 2008). The numbers of individuals from the three main re-
gions where Afro-Colombians were found to have originated were re-
corded: West Africa (W) n = 6000, West Central Africa (WC) n =
340,000 and South West Africa (SW) n= 200,000 (Fig. 1). The modern
Afro-Colombian population was assumed to be made up of individuals
with ancestries equal to the relative proportions of individuals from
these three ancestral regions. This assumes that the regional origin pro-
portions of Afro-Colombians have not changed substantially over time,
al regions fromwhichAfro-Colombianswere taken are shown alongwith time periods and
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which is consistent with findings that Africans in the Americas do not
show evidence of assortative mating with respect to tribal or regional
origins (Zakharia et al., 2009). The method also assumes relatively low
levels of migration within the African regions since the time of the
trans-Atlantic slave trade.

Regional distributions ofmtDNAhaplotypes for countries correspond-
ing to the three Afro-Colombian ancestral regions were taken from a re-
cently compiled database of African mtDNA haplotypes (Stefflova et al.,
2011). For this data set, results from 39 different studies were combined
to yield a total of 128mtDNA haplotypes from 34 countries characterized
from 13,783 individuals. Individual mtDNA haplotypes were drawn from
this data set in order to simulate modern Afro-Colombian populations
as described below. A dataset of all the individual mtDNA haplotypes
used for this study, along with their regional origins and additional
demographic information, is provided as Supplementary Table 1.

2.2. Simulation of in silico Afro-Colombian populations

Monte Carlo simulation was used to create in silico Afro-Colombian
populations by randomly drawingmtDNA haplotypes, from the dataset
described in Section 2.1 (Supplementary Table 1), in proportion to the
relative frequencies of the three African ancestral populations P(Re-
gion): P(W) = 0.011, P(WC) = 0.366, P(SW) = 0.623. Each randomly
simulated population consisted of 1000 individuals, and 1000 random-
ized populations were created for the subsequent ancestry inference
and evaluation steps.

2.3. Assessment of posterior probabilities for Afro-Colombian ancestry
assignment

Bayes' rule was applied to combine evidence from (i) historical re-
cords and (ii) genetic data in order to assign the most likely African an-
cestral origins for Afro-Colombian individuals using the posterior
probability. For any given Afro-Colombian individual who has their
mtDNA haplotype characterized, their African ancestral origin can be
assigned as the posterior probability of coming from one of the three an-
cestral regions given that particular haplotype: P(Region|Haplotype).
Bayes' rule can be used to infer this posterior probability based on the
relative proportion of mtDNA haplotypes of that kind coming from the
same region (i.e., the conditional probability): P(Haplotype|Region). To
combine the historical data using the Bayes' rule approach, the relative
contributions of African ancestral regions to the modern Afro-
Colombian population are considered as prior probabilities: P(Region).
P(Region) is defined as the relative fraction of Afro-Colombians from
any given region based on historical records (see 2.2). Finally, the over-
all probability of seeing the mtDNA haplotype in the entire data set,
P(Haplotype), is used to normalize the Bayesian ancestry inference.
P(Haplotype) is defined as the overall fraction of any given haplotype
in the entire dataset. Thus, for any given Afro-Colombian individual
with a mtDNA haplotype, and for any of the three ancestral regions,
the posterior probability of the ancestry assignment can be found as:

P RegionjHaplotypeð Þ ¼ P HaplotypejRegionð ÞP Regionð Þ
P Haplotypeð Þ :

An illustration of this approach for an example of a single mtDNA
haplotype (L2c) and one ancestral region (W) is shown here:

P WjL2cð Þ ¼ P L2cjWð ÞP Wð Þ
P L2cð Þ ¼ P L2cjWð ÞP Wð ÞX

P L2cjRegionð ÞP Regionð Þ

¼ P L2cjWð ÞP Wð Þ
P L2cjWð ÞP Wð Þ þ P L2cjWCð ÞP WCð Þ þ P L2cjSWð ÞP SWð Þ

¼ 0:179 � 0:011
0:179 � 0:011þ 0:024 � 0:366þ 0:009 � 0:623 ¼ 0:113:
2.4. Evaluation of the combined evidence Bayesian ancestry assignments

The (i) relative accuracy (A) and (ii) error (E) levels of the Bayesian
ancestry assignment method for Afro-Colombian individuals were
calculated by comparing individuals' predicted ancestries, based on
the described application of Bayes' rule, and their known ancestries
based on the simulated populations (described in Section 2.2).

For each simulated Afro-Colombian population of 1000 individuals,
the relative accuracy (A) of the ancestry assignment is calculated as
the fraction of individuals with correctly predicted ancestries (C), with
a scaling factor applied such that random accuracy is equal to 50% (as
opposed to 33% expectedwhen inferring ancestry across three regions).
The fraction of individuals with correctly predicted ancestries (C) is
taken as the fraction of simulated individuals whose highest posterior
probability ancestry assignment corresponds to the population from
which they were simulated. Accuracy (A) = C/1000, and the relative

accuracy = A � 0:5
33 if A≤33 or ðA−33Þ �0:5

67 þ 0:5 if A≥33. The error (E) of
the ancestry inference for each simulated Afro-Colombian population
is computed as the sum of the root mean squared difference between
individuals predicted ancestries and their known ancestries across the
three regions:

E ¼
X1000
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
P Regionð ÞBayesi −P Regionð ÞKnown

i

� �2� �
= 3

s !

where P(Region)iBayes is the posterior probability that the ancestry of in-
dividual i corresponds to that region and P(Region)iKnown is the frequency
individual i haplotype in that region.

For any given set of historical prior probabilities, the process of
Bayesian ancestry inference followed by calculation of the relative accu-
racy (A) and error (E) was repeated for the 1000 randomly simulated
populations to compute accuracy (A) and error (E) distributions. This
process was repeated across a grid search space covering all of the pos-
sible historical prior probabilities in a stepwise manner; at each prior
probability set in the grid, the posterior probability ancestry assignment
values were re-calculated followed by accuracy (A) and error (E) calcu-
lations (Fig. 2). Accuracy (A) and error (E) levels were calculated for
each population, and the distributions of these values over 1000 popu-
lations were compared between different prior spaces using the
Student's t-test.

2.5. Sensitivity of mtDNA haplotypes to changes in historical probability
priors

The effect of changing historical prior probability sets on haplotype-
based ancestry inference, as measured by the posterior probability
P(Region|Haplotype), was computed via Manhattan distances between
posterior probability vectors for the three regions:

DHap ¼
X

Regions

P RegionjHapð Þprior set1− P RegionjHapð Þprior set2

��� ���:

The relative breadth, or conversely the regional-specificity, of
mtDNA haplotype distributions across the three African regions evalu-
ated here was measured using Shannon's Entropy (H), where:

Hi ¼ −
X

j ∈ all Regions

P HapijRegionj
� 	� log2 P HapijRegionj

� 	� 	
:

The use of Shannon's entropy in this way allowed us to evaluate the
relationship of the evenness of historical prior probabilitieswith respect
to accuracy of ancestry assignment.



Fig. 2. Simulation and ancestry assignment for AfroColombians. (A) A schematic of the population simulation and Bayesian ancestry assignment approach usedhere. (B)Results of ancestry
assignment accuracy and error across historical prior probability space. Note that while there are historical prior probability values for three geographical regions, the value of the third
prior is dependent on the first two priors.
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3. Results

3.1. Combined evidence ancestry assignment with Bayes' rule

We proposed an inverse probability approach, based on Bayes' rule,
in order to evaluate the utility of combining (i) historical records with
(ii) genetic data for making human ancestry inferences. Specifically, a
method for assigning the sub-continental African ancestral origins of
Afro-Colombians was developed by combining historical records of
trans-Atlantic slave voyages (Maya Restrepo, 2005; Rodriguez, 2008)
with African mtDNA haplotype distributions (Stefflova et al., 2011). In
this approach, the historical records are taken as prior probabilities indi-
cating the probability that an Afro-Colombian comes from one of three
possible ancestral regions – West Africa (W), West Central Africa
(WC) or South West Africa (SW) – in the absence of any genetic infor-
mation (Fig. 1). Individuals' mtDNA haplotypes can then be compared
to the distribution of mtDNA haplotypes across the three ancestral re-
gions in order to provide additional resolution for ancestry inference.
The details of this combined evidence Bayesian method for Afro-
Colombian ancestry inference are spelled out in the Material and
Methods Section 2.3.

This combined evidence approach to ancestry inference was evalu-
ated by simulating Afro-Colombian populations, with individuals repre-
sented by specific mtDNA haplotypes, based on the relative frequencies
of individuals expected to have originated from each ancestral region
(seeMaterial andMethods Section 2.2). This simulation process yielded
randomized sets of individual mtDNA haplotypes with known ancestral
origins. The Bayesianmethod for ancestry assignment was then applied
to these simulated mtDNA haplotypes, using different sets of historical
prior probabilities, and the ancestry assignments based on the Bayesian
approachwere compared to the true ancestries based on the simulation
(Fig. 2).
3.2. Increased resolution of combined evidence for ancestry assignment

The utility of the Bayesian combined evidence approach to ances-
try inference developed here was evaluated by calculating the accu-
racy and error of predicted ancestries compared to known ancestries
based on the simulated Afro-Colombian populations (see Material
and Methods Section 2.4). This three-step approach – 1) simulation,
2) ancestry assignment and 3) evaluation (Fig. 2A) – was iterated
over the entire space of possible ancestry prior probabilities. The dis-
tributions of accuracy and error across prior space are shown in
Fig. 2B. The null expectation for Bayesian ancestry assignment was
validated by randomly assigning sub-continental ancestries to
Afro-Colombian individuals and calculating their accuracy. As ex-
pected, random ancestry assignments for simulated populations
have relative accuracy values that fluctuate around 50% and high
error levels (Fig. 3A, C and D).

Next, we wished to compare the utility of adding historical infor-
mation to genetic data for making ancestry inferences. To do this, we
compared the results of using so-called flat prior probabilities,
whereby the prior probabilities of an Afro-Colombian individual
coming from any of the three ancestral regions is equal. This is equiv-
alent to not using any historical information in ancestry inference,
i.e., relying on genetic information alone. With this approach, the av-
erage ancestry assignment accuracy value is 63.2% and the average
error level is 203.2 (Fig. 3). While these accuracy and error values
are substantially higher than seen for the random ancestry assign-
ment, they are nevertheless lower than what one may desire for a
confident sub-continental ancestry inference. This is consistent
with previous results calling attention to the fact that broad conti-
nental distributions of mtDNA haplotypes make precise sub-
continental ancestry inferences based on these data alone highly
problematic (Salas et al., 2004, 2005).



Fig. 3.Accuracy and error of ancestry assignment for different approaches to historical prior probability selection. (A) Accuracy levels are compared for different historical prior probability
sets across 1000 simulations. (B) Expansion of the accuracy range from panel A showing results for the historical, dynamic and personalized prior probability sets. (C) Accuracy and
(D) error value distributions for the different prior probability sets.
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Historical records were incorporated into the Bayesian ancestry in-
ference in the form of prior probabilities based on the relative frequen-
cies of Africans recorded to have been taken from those regions to
Colombia (Fig. 1). Incorporation of historical priors results in a substan-
tial increase in the average accuracy to 81.4% and a marked decrease in
the average error level to 40.2 (Fig. 3). The differences between flat
priors, with no historical information included, and historical priors
are highly statistically significant (Student's t-test accuracy t =
3.9 × 102, p ≈ 0; error t = 6.5 × 102, p ≈ 0). These results underscore
the utility of combining historical and genetic information for ancestry
inference.
3.3. Effect of the prior probability space on ancestry assignment

Historical records of trans-Atlantic slave voyages to Colombia point
to three eras of forced migration, each of which corresponded to a dis-
tinct African region, different colonial perpetrators andmarkedly diver-
gent numbers of transported individuals (Fig. 1). This process yielded a
highly asymmetrical distribution of African sub-continental origins for
Afro-Colombians, with a particular under-representation of individuals
from West Africa. Accordingly, the historical prior probabilities for the
three regions are highly skewed, and this could result in diminishing
useful ancestry information provided by mtDNA haplotypes.

To address this possibility, we dynamically adjusted the historical
prior probabilities in order to search for the best possible overall prior
combination (Fig. 2B). This was done by using a grid-search to calculate
the posterior probabilities, i.e., the ancestry assignments, over the entire
range of possible prior probabilities. The objective criterion for this grid-
search in prior probability space was the lowest possible error rate for
ancestry assignment.

We expected that there may be a less skewed overall prior probabil-
ity space that results inmore reliable ancestry inference by virtue of giv-
ing additional weight to mtDNA haplotypes that are more regionally-
specific. This process did significantly reduce the average error level
(Student's t = 6.5, p = 1.0 × 10−10), but the difference between the
error levels for the historical and dynamic priors is quite small (4% dif-
ference, Fig. 3D). In addition, the accuracy level distributions for histor-
ical versus dynamic priors are not significantly different (Student's t =
0.8, p = 0.44). The optimal set of dynamic priors does show a 3.6 fold
increase in the prior probability for West Africa, consistent with the
idea that the highly skewed historical prior distribution diminishes
the ancestry information encoded in regional-specific mtDNA haplo-
types. However, the small overall difference in the effect of dynamically



Fig. 4. Changes in mtDNA ancestry assignment across different historical prior probability
sets. (A) Examples of the similarity of ancestry assignment between different pairs of prior
probabilities is shown for three mtDNA haplotypes. (B) The extent to which mtDNA hap-
lotype ancestry assignments vary across different sets of geographical priors. (C) Entropy
levels, based on likelihoods of mtDNA haplotypes across the three geographical regions,
for groups mtDNA haplotypes from the three clusters in panel B.
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adjusting the historical prior probabilities suggests the possibility that
this is only the case for some of the mtDNA haplotypes.

3.4. Personal prior probabilities for ancestry assignment

The utility of combining historical records with genetic information
in making ancestry inferences, particularly for inferring African sub-
continental ancestry, was initially suggested by results showing that
mtDNA haplotypes are broadly distributed across the continent (Salas
et al., 2004, 2005). However, the fact that dynamically adjusting the
prior probabilities results in a flattening of the prior space, i.e., eliminat-
ing some of the skew in the prior probabilities seen based on the histor-
ical records, suggests the possibility that more regional-specific mtDNA
haplotypes do in fact contain useful ancestry information. Nevertheless,
the entire set of mtDNA haplotypes represented in any given Afro-
Colombian population will likely differ substantially with respect to the
breadth of their distribution across African regions. Thus, it may be the
case that using a single set of historical prior probabilities for ancestry in-
ference with mtDNA haplotypes that show widely different degrees of
regional-specificity will not yield the best results. Instead, it may be pref-
erable to infer ancestry using optimal prior probability sets that are indi-
vidually determined for each distinct mtDNA haplotype.

To evaluate this possibility, we dynamically adjusted the historical
probabilities individually for each mtDNA haplotype and chose the
prior probability set that yielded the lowest error rate for that particular
haplotype, i.e., we generated a set ofmtDNA haplotype-specific ‘person-
alized priors’. The ancestry inference results for all mtDNA haplotypes
were then combined when evaluating the accuracy and error levels
for the entire set of simulated populations. Calculating mtDNA-specific
prior probability sets in this way, to yield personalized priors, results
in the highest accuracy levels and lowest error levels of any of the
methods. The improvement in accuracy is highly significant (Student's
t = 15.9, P = 7.7 × 10−54), albeit quite marginal (0.74% difference,
Fig. 3C), compared to the dynamic prior probabilities, whereas the re-
duction in the error level is both highly significant and farmore substan-
tial (96% difference, Student's t = 2.2 × 102, P ≈ 0, Fig. 3D).

The source of this improved performance, and conversely the mar-
ginal effect of dynamically adjusting the historical prior probabilities
(see Section 3.3), can be traced to the differences in how individual
mtDNA haplotypes respond to changes in priors. Individual haplotypes
vary greatly with respect to the extent towhich changing the prior prob-
abilities affects ancestry inference. Some mtDNA haplotypes show low
levels of change, or virtually no change, in ancestry assignment for differ-
ent prior probabilities, whereas others show higher levels of change
(Fig. 4A). There are three discrete clusters with respect to the extent to
which changing the historical prior probabilities influences ancestry in-
ference (Fig. 4B). Each of these clusters ofmtDNA haplotypes has distinct
levels of haplotype likelihood variation (P(Haplotype|Region)) across the
three geographical regions, as represented by entropy in Fig. 4C. Low en-
tropymtDNAhaplotypes have skeweddistributions, in terms of their rel-
ative frequencies across geographic regions, and conversely high entropy
haplotypes are more evenly distributed across regions. Ancestry assign-
ment for unevenly distributed mtDNA haplotypes is more determined
by the genetic data, whereas ancestry formore evenly distributed haplo-
types is more dependent on the historical prior probabilities. These
differences in haplotype behavior mean that a single set of prior proba-
bilities, even if optimally assigned, cannot accurately capture ancestry as-
signment as well as a set of personal prior probabilities individually
tailored to distinct mtDNA haplotypes.

4. Discussion

The ability to pinpoint the ancestral geographical origins of a family
lineage is fundamental to genetic genealogy. Accurate assignment of an-
cestral origins is dependent on the differential geographic distribution
of genetic markers. While there are numerous genetic markers
(haplotypes) that are clearly differentiated between continents, most
ancestral lineage markers, including widely employed uniparental
markers such as mtDNA, are widely distributed across different geo-
graphical regionswithin continents. Thismeans that the genetic charac-
terization of any suchmarker can only be used to assign ancestry across
a broad geographic region. Despite this limitation, lineage-based tests of
ancestry continue to be widely used for ancestry assignment.

The combination of historical evidence, based on written records,
with genetic marker based data should be able to provide increased res-
olution for geographical ancestry assignment. Indeed, companies that
provide genealogical services have begun to recognize this fact and pro-
vide the ability for users to integrate historical recordswith genetic data.
However, to date there has not been any formal analytical framework
for the integration of historical records with information gleaned from
the characterization of genetic markers. Here, we provide such a frame-
work in the form a straightforward Bayesian calculation for the combi-
nation of information taken from historical records with data on the
geographical distribution of mtDNA haplotypes. Bayesian approaches
have been shown to be quite useful for genetic marker based ancestry
inference (Corander et al., 2004; Raj et al., 2014), but they have not
been used to combine historical and genetic information as we have
done here. We show that the incorporation of historical information
using Bayes' rule, i.e., the calculation of posterior probabilities, can sub-
stantially increase the accuracy of ancestry assignment based onmtNDA
haplotypes.
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Our combined evidence Bayesian approach to ancestry assignment
was applied to the question of the African geographic origins of Afro-
Colombians. Despite the fact that there is a large population of Afro-
descendants in Colombia, this particular community has been relatively
understudied, in terms of their genetic ancestry, compared to nearby
mestizo populations that have primarily European and Native American
ancestry. Thus, the application of the combined evidence approach to an-
cestry assignment in this community has the potential to be impactful. In
addition, descendants of Africans throughout the Americas have been
particularly interested taking advantage of genetic approaches to geneal-
ogy to gain insight into their ancestral origins, whichwere often obscured
by the harsh conditions of the slave trade. Our approach should prove to
be relevant and applicable to other communities of Afro-descendants in
the Americas. In fact, there is awell-established effort underway to record
and analyze records of more than 35,000 trans-Atlantic voyages that car-
ried more than 12 million Africans destined for the new world (http://
www.slavevoyages.org/). Data from this detailed resource could be used
as historical priors for ancestry assignment of African–Americans, Afro-
Caribbeans and Afro-Brazilians.

Our results also underscore the utility of taking a personalized ap-
proach to ancestry inference. The individualized assignment of histori-
cal prior probabilities to different mtDNA haplotypes can often yield
major changes in ancestry inference and leads to an overall improve-
ment in ancestry assignment. The interrogation of more family-
specific historical records could provide a way to formulate historical
prior values that are even more individually tuned to personal family
histories.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gene.2015.08.015.
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