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Abstract 19 
The NIH All of Us Research Program (All of Us) aims to build one of the world’s most diverse population 20 
biomedical datasets in support of equitable precision medicine.  For this study, we analyzed participant 21 
genomic variant data to assess the extent of population structure and to characterize patterns of genetic 22 
ancestry for the All of Us cohort (n=297,549).  Unsupervised clustering of genomic principal component 23 
analysis (PCA) data revealed a non-uniform distribution of genetic diversity and substantial population 24 
structure in the All of Us cohort, with dense clusters of closely related participants interspersed among 25 
less dense regions of genomic PC space.  Supervised genetic ancestry inference was performed using 26 
genetic similarity between All of Us participants and global reference population samples.  Participants 27 
show diverse genetic ancestry, with major contributions from European (66.4%), African (19.5%), Asian 28 
(7.6%), and American (6.3%) continental ancestry components.  Participant genetic similarity clusters 29 
show group-specific genetic ancestry patterns, with distinct patterns of continental and subcontinental 30 
ancestry among groups.  We also explored how genetic ancestry changes over space and time in the 31 
United States (US).  African and American ancestry are enriched in the southeast and southwest regions 32 
of the country, respectively, whereas European ancestry is more evenly distributed across the US.  The 33 
diversity of All of Us participants’ genetic ancestry is negatively correlated with age; younger participants 34 
show higher levels of genetic admixture compared to older participants.  Our results underscore the 35 
ancestral genetic diversity of the All of Us cohort, a crucial prerequisite for genomic health equity.   36 
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Introduction 37 
The biomedical research community has become increasingly aware of the genomics research gap, 38 
whereby the vast majority of participants in genetics research cohorts are of European ancestry1, 2, 3.  The 39 
Eurocentric bias in genomics research threatens to exacerbate health disparities, since discoveries made 40 
with European ancestry cohorts may not transfer to diverse ancestry groups4.  The NIH All of Us Research 41 
Program (All of Us) is a large cohort study of people who live in the US that combines participant genomic, 42 
phenotypic, and environmental data, with health-related outcome data gleaned from surveys and 43 
electronic health records5, 6.  All of Us has emphasized the recruitment of participants from population 44 
groups that are underrepresented in biomedical research in an effort to close the genomics research gap 45 
and to ensure that the benefits of precision medicine are shared equitably among all people7, 8.   46 
 47 
All of Us demonstration projects are being used to describe and validate the initial genomic data release 48 
and the cloud-based Researcher Workbench, where registered users can access and analyze participant 49 
data9.  The aim of this demonstration project was to characterize the patterns of population structure and 50 
genetic ancestry among All of Us participants.  Population structure refers to differences in the 51 
frequencies of genetic variants (alleles) among different groups or populations within a species, and 52 
population structure can be revealed by the presence of clusters of genetically similar individuals10.  53 
Genetic ancestry is closely related to the concept of population structure, and it can be defined 54 
conceptually, mechanistically, and operationally.  Conceptually, genetic ancestry reflects the geographic 55 
origins of an individual’s ancestors11, 12, 13, 14.  Mechanistically, genetic ancestry has been defined as the 56 
subset of genealogical paths through which an individual’s DNA has been inherited from their ancestors15.  57 
For any individual, only a subset of their genealogical ancestors contributes DNA to their genome.  58 
Operationally, genetic ancestry is typically characterized via genetic similarity between query individuals 59 
(e.g. All of Us participants) and individuals from global reference populations, which are taken as 60 
surrogates for ancestral populations16, 17, 18, 19.   61 
 62 
For this demonstration study of the All of Us cohort, we analyzed participant genomic variant data to (1) 63 
assess the extent of population structure in the cohort, (2) characterize the patterns of participant genetic 64 
ancestry at continental and subcontinental levels, and (3) explore how participants’ genetic ancestry 65 
changes over space and time in the US.  Our results reveal substantial population structure and 66 
heterogeneous patterns of genetic ancestry among All of Us participants, consistent with the consortium’s 67 
efforts to recruit a diverse participant cohort.      68 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2024. ; https://doi.org/10.1101/2024.12.21.629909doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.21.629909
http://creativecommons.org/licenses/by-nc/4.0/


4 
 

Materials and Methods 69 
All of Us participant cohort, consent, and IRB review 70 
This study was performed as an All of Us genomic data demonstration project5.  All of Us demonstration 71 
projects are intended to describe and validate data and analysis tools for the participant cohort.  Details 72 
on the initial All of Us data release and Researcher Workbench used for this study were previously 73 
published6.  The genomic data demonstration project and experimental protocols were approved by the 74 
All of Us Institutional Review Board (#2016–05-TN-Master), and informed consent was obtained from all 75 
participants.  All of Us inclusion criteria include adults 18 and older, with the legal authority and decisional 76 
capacity to consent, and currently residing in the US or a territory of the US.  All of Us exclusion criteria 77 
exclude minors under the age of 18 and vulnerable populations (prisoners and individuals without the 78 
capacity to give consent).  Details on participant recruitment, informed consent, inclusion and exclusion 79 
criteria are available online at https://allofus.nih.gov/sites/default/files/All of 80 
Us_operational_protocol_v1.7_mar_2018.pdf.  Results reported here comply with the All of Us Data and 81 
Statistics Dissemination Policy disallowing disclosure of group counts under 20. 82 
 83 
The All of Us Researcher Workbench was used to build the participant cohort for this study 84 
(Supplementary Figure 1).  The cohort was built from the All of Us Controlled Tier dataset v7 (curated 85 
version C2022Q4R9), which includes participants enrolled from 2018-2022, with a data cutoff date of 86 
7/1/2022.  Participants who self-identified as American Indian or Alaska Native were not included in the 87 
analysis.         88 
 89 
Unsupervised genetic clustering analysis 90 
Participant genomic data were accessed from the Controlled Tier dataset.  Genome-wide genotypes for 91 
All of Us participants were characterized using the Illumina Global Diversity Array with variants called for 92 
1,824,517 genomic positions on the GRCh38/hg38 reference genome build.  All of Us participant variants 93 
were merged and harmonized with whole genome sequence variant data from 3,433 global reference 94 
samples characterized as part of the 1000 Genomes Project (1KGP; phase 3) and the Human Genome 95 
Diversity Project (HGDP; Supplementary Table 1)20, 21.  Biallelic variants common to the All of Us and 96 
reference data sets were merged, with strand flips and variant identifier inconsistencies harmonized as 97 
needed.  Variants with >1% missingness and <1% minor allele frequency were removed from the merged 98 
and harmonized dataset.  Linkage disequilibrium (LD) pruning was done using window size=50, step 99 
size=10, and pairwise threshold r2<0.1, yielding a final All of Us and global reference sample dataset of 100 
187,795 variants.  Variant merging, harmonization, and LD pruning were performed using PLINK version 101 
1.922 and custom scripts as previously described23, 24, 25.  The final dataset of All of Us participant genomic 102 
variants was used for unsupervised clustering analysis.  Principal Component Analysis (PCA) was run on 103 
the variant dataset using the FastPCA program implemented in PLINK version 2.0.  The clustering tendency 104 
of the resulting genomic PCA data was analyzed using the Hopkins statistic with the hopkins R package26 105 
and nearest neighbor search with the FNN R package version 1.1.427.  Kernel density estimation was 106 
performed with the MASS R package using PCs 1-3 and contour lines were extracted from the estimated 107 
density distribution28.  Density-based clustering was performed using the HDBSCAN algorithm29. HDBSCAN 108 
was run on first 5 PCs for the PCA data with parameters min_samples=2,000 and min_cluster_size=2,500.  109 
Cluster boundaries were visualized using the ggforce R package.  110 
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Supervised genetic ancestry inference 111 
Genomic variants from All of Us participants and a set of four global reference populations were merged 112 
and harmonized as described in the previous section to perform continental and subcontinental genetic 113 
ancestry inference.  Kinship analysis was performed with the KING program to eliminate related (or 114 
duplicated) reference samples from the global reference populations30.  Continental genetic ancestry 115 
inference was performed using a subset of 1,572 global reference samples from the 1KGP and the HGDP, 116 
which were selected as non-admixed representatives of seven ancestry groups: African, American, East 117 
Asian, South Asian, West Asian, European, and Oceanian (Supplementary Table 1).  K-nearest neighbor 118 
clustering of genomic PCA data was used to identify All of Us participants that cluster together with 119 
African, East Asian, South Asian, and European reference populations, and these participants were used 120 
for subcontinental ancestry inference31.  West Asian and Oceanian reference populations were not used 121 
for this purpose owing to the relatively low number of participants that clustered with these groups.  Asian 122 
and European reference populations for subcontinental ancestry inference were taken from the 1KGP and 123 
HGDP (Supplementary Table 2).  1KGP and HGDP reference populations were used together with 124 
additional reference populations to provide broader geographic coverage for African and American 125 
subcontinental ancestry inference (Supplementary Table 2).  African reference samples were taken from 126 
a study of Bantu-speaking populations in Africa that included samples from 53 populations from east, 127 
central, south, and west Africa32.  The merged and harmonized African subcontinental ancestry inference 128 
panel included 1,659 reference samples and 228,033 variants.   129 
 130 
Continental and subcontinental ancestry inference was performed via analysis of merged All of Us 131 
participant and global reference population genomic variant sets with the program Rye (Rapid ancestrY 132 
Estimation)33.  Rye performs rapid and accurate genetic ancestry inference based on principal component 133 
analysis (PCA) of genomic variant data.  PCA was run on the merged variant datasets using the FastPCA 134 
program implemented in PLINK version 2.0, and Rye was then run on the first 25 PCs, using the defined 135 
reference ancestry groups to assign ancestry group fractions to individual All of Us participant samples.  136 
The continuous ancestry fractions that we report here were calculated independently of the categorical 137 
ancestry predictions currently provided by the All of Us Researcher Workbench34.  138 
 139 
All of Us participant continental ancestry fractions were visualized as admixture-style plots at the state (or 140 
territory) level using the geofacets R package35, 36.  Admixture entropy (𝐴𝐸) was used to quantify the 141 
amount of genetic admixture for All of Us participants as previously described25, 37: 𝐴𝐸! =142 
−∑ 𝑝"𝑙𝑜𝑔	(𝑝")#

"$% , where 𝑝"  is the fraction of ancestry group 𝑗 for individual 𝑖. 143 
 144 
Note on genetic ancestry inference 145 
As discussed in the introduction, genetic ancestry can be defined conceptually, mechanistically, and 146 
operationally.  We use an operational definition of genetic ancestry for All of Us participants in this study, 147 
as measured by their levels of genetic similarity with global reference population samples16, 17.  148 
Accordingly, the phrase ‘African ancestry’ is used here as shorthand for similarity to African reference 149 
population samples, ‘European ancestry’ is used for similarity to European reference population samples 150 
and so on.  ‘American ancestry’ refers to genetic similarity in Indigenous American reference population 151 
samples.  The relative levels of similarity to different reference population groups allows us to infer 152 
percent ancestry components for All of Us participants33.  The genetic ancestry results reported here are 153 
contingent upon the choice of reference populations, how these reference populations are delineated, 154 
and the method used to infer genetic similarity between All of Us participants and the reference 155 
population samples.  156 
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Results 157 
Unsupervised: population structure 158 
A cohort of 297,549 All of Us participants, for whom genomic data are available, was created using the All 159 
of Us Researcher Workbench (Supplementary Figure 1).  All of Us participant genetic diversity was 160 
analyzed using PCA of genomic variant data followed by unsupervised clustering to assess the extent of 161 
population structure in the cohort.  The clustering tendency of participant genomic PCA data was 162 
evaluated using the Hopkins statistic, nearest neighbors, and kernel density estimation.  The PCA data 163 
yield a Hopkins statistic value of ~1, indicating highly clustered, non-uniformly, and non-randomly 164 
distributed genomic PCA data.  The numbers of close neighbors per participant are highly variable across 165 
PC space, and kernel density estimation shows a multimodal distribution with distinct peaks separated in 166 
PC space (Figure 1A and 1B).  All three of these metrics reveal highly clustered participant genomic data, 167 
with dense groups of genetically similar individuals interspersed among less dense regions, indicative of 168 
substantial population structure in the All of Us cohort.   169 
 170 
Density-based clustering of the genomic PCA data yield an optimal number of K=7 genetic diversity 171 
clusters (Figure 1C).  Similar clustering was performed using a Uniform Manifold Approximation and 172 
Projection (UMAP) analysis of the genomic PCA data (Supplementary Methods).  Density-based clustering 173 
of UMAP data reveals almost twice as many clusters (K=13) as seen for the PCA data, but there is broad 174 
concordance between the two methods with high percentages of participant overlap for each PCA cluster 175 
within one or two corresponding UMAP clusters (Supplementary Figure 2).  The number of All of Us 176 
genetic diversity clusters could change with future participant data releases.  177 
 178 
Supervised: genetic ancestry 179 
All of Us participant genetic ancestry was inferred using genomic PCA data analyzed with the Rye (Rapid 180 
ancestrY Estimation) program33.  Participant PCA data were compared with PCA data from global 181 
reference populations, taken from the 1KGP and the HGDP, to infer individual ancestry proportions from 182 
seven continental-level ancestry groups: African, American, East Asian, South Asian, West Asian, 183 
European, and Oceanian (Supplementary Table 1 and Supplementary Figure 3).  All of Us participants are 184 
broadly distributed in PC space, whereas global reference samples from different ancestry groups are 185 
tightly clustered in PC space (Figure 2A and 2B).  Rye infers All of Us participant genetic ancestry 186 
proportions as linear combinations of reference population ancestries.  Overall, the All of Us participant 187 
cohort shows 19.51% African, 6.33% American, 2.57% East Asian, 3.05% South Asian, 1.95% West Asian, 188 
66.37% European, and 0.21% Oceanian ancestry.  The All of Us participant genetic similarity groups 189 
inferred with density-based clustering show group-specific patterns of ancestry proportions, with a 190 
continuum of ancestry proportions within and between groups (Figure 2C).  Groups 1, 3, 4, and 7 show 191 
the most uniform patterns of ancestry within groups, whereas groups 2, 5, 6, and the remaining 192 
participants that did not fall into any density-based cluster show more diverse patterns of ancestry and 193 
admixture.  All groups show evidence of admixture with multiple ancestry components present in 194 
different proportions.   195 
 196 
The All of Us Researcher Workbench predicts participant membership among six continental ancestry 197 
groups, using a PCA-based machine learning method that is distinct from the continuous ancestry 198 
inference approach used here34.  We compared the participant continental ancestry percentages inferred 199 
here to the Researcher Workbench assigned categorical ancestry groups (Supplementary Figure 4).  Five 200 
of the six categorical ancestry groups correspond exactly with the reference population groups we use: 201 
African, East Asian, South Asian, Middle Eastern (West Asian here), and European.  For these five groups, 202 
there is high correspondence between participants’ PCA-based machine learning predicted group 203 
membership and averages for the ancestry percentages that we inferred (83.02-97.71% matching 204 
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ancestry).  The Admixed American ancestry category from the Researcher Workbench includes modern, 205 
admixed reference samples from Latin America, whereas our American reference population group 206 
includes Indigenous American samples only (Supplementary Table 1).  The Admixed American group 207 
shows 51.01% European ancestry and 35.84% American ancestry, consistent with what is expected for 208 
modern Latin American populations38, 39.  209 
 210 
We also used Rye to infer subcontinental ancestry for All of Us participants with high levels of African 211 
(n=9,291), East Asian (n=2,457), South Asian (n=2,484), and European ancestry (n=24,730; Figure 3).  The 212 
relationships among the reference populations used for subcontinental ancestry inference with Rye and 213 
All of Us participants are shown in Supplementary Figures 5-7.  African subcontinental ancestry is 214 
characterized by a predominant West Central African component, followed by West African and Bantu 215 
components.  East Asian subcontinental ancestry is highly diverse with predominant Han (Chinese), 216 
Japanese, and Southeast Asian components.  South Asian subcontinental ancestry is mainly South Indian 217 
followed by North Indian and a small Central Asian component.   European subcontinental ancestry is 218 
made up primarily of British ancestry followed by Italian and Iberian components.   219 
 220 
Genetic ancestry by geography and age 221 
All of Us participant continental ancestry percentages were visualized across fifty states and Puerto Rico 222 
to evaluate the geographic distribution of ancestry across the US (Figure 4).  African ancestry is 223 
concentrated primarily in the southeast part of the country, whereas American ancestry if found primarily 224 
in the southwest and California.  European ancestry is more uniformly distributed across the country, with 225 
the highest concentrations found in north, along the Canadian border.  Relatively high levels of admixture 226 
are seen in the northeast, Florida, and Hawaii. 227 
 228 
The relationship between All of Us participants’ age and genetic ancestry was assessed using genetic 229 
admixture entropy, where higher values indicate a more diverse combination of ancestry components 230 
within individual genomes and lower values indicate more homogenous ancestry (Figure 5).  Genetic 231 
admixture entropy is negatively correlated with participant age, indicating that younger participants have 232 
more diverse ancestry combinations than older participants. 233 
 234 
Discussion 235 
Our analysis demonstrates the genomic and ancestral diversity of the All of Us cohort, consistent with the 236 
project’s goals to recruit participants from population groups that are underrepresented in biomedical 237 
research in support of health equity.  Indeed, All of Us is one of the most diverse population biomedical 238 
datasets in the world, and this represents an important step towards making precision medicine more 239 
widely available and more applicable to diverse communities in the US7, 8, 40.  The promise of population 240 
biomedical datasets like All of Us rests on the integration of genetic, social, environmental, and health 241 
outcome data for many thousands of diverse participants.  Given that genetic ancestry is derived from the 242 
genome, it should be possible to use genetic ancestry inference, together with population biomedical 243 
datasets, to help elucidate genetic and socioenvironmental contributions to health outcomes and 244 
disparities.   245 
 246 
One challenge is that current methods for genetic ancestry inference, while accurate, are slow and do not 247 
scale to biobank sized datasets like All of Us.  We developed the Rye algorithm as a fast and 248 
computationally efficient genetic ancestry inference method that can sale to biobank sized genomic data 249 
sets33.  Application of Rye to genome-wide genetic data for 297,549 All of Us participants underscores its 250 
utility for this purpose.  Using Rye, we found the All of Us cohort to be ancestrally diverse with distinct 251 
patterns of genetic ancestry and admixture among genetic similarity groups and geographic regions 252 
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(Figures 2-4).  The geographic patterns of genetic ancestry seen for the All of Us cohort are consistent with 253 
previous studies and could also reflect differences in participant recruitment across the country41, 42, 43.     254 
 255 
The extent to which human genetic diversity is characterized by clusters of closely related individuals, i.e. 256 
population structure, versus clines of continuous genetic variation has long been a subject of interest44, 45, 257 
46, 47, 48.  The All of Us cohort allows for an assessment of the extent of population structure in the US given 258 
the large size of the cohort, the extensive sampling of participants across the country, and the 259 
demographic diversity of the participants.  The application of several different cluster analysis methods 260 
to participants’ genomic PCA data revealed evidence for substantial population structure in the cohort, 261 
with dense clusters of relatively closely related participants interspersed among less dense regions in PC 262 
space (Figure 1).  The population structure and genetic clusters that can be gleaned from clustering 263 
analysis of genomic PCA data are not readily apparent from visual inspection of these same data, owing 264 
to large size of the cohort and over-plotting of participants in dense regions of PC space (Figure 2A).   265 
 266 
Finally, we show that genetic diversity in the US is increasing over time.  Younger All of Us participants are 267 
far more ancestrally diverse than older participants, and this trend is evident across the entire age range 268 
of the cohort.  This finding suggests that genetic ancestry categories and group designations will become 269 
increasingly obsolete over time49. 270 
 271 
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 387 

Figure 1. Population structure.  Genomic PCA for All of Us participants.  Left panels show PC1 versus PC2 388 
comparisons, and right panels show PC1 versus PC3 comparisons, with the percent of variance explained 389 
by each PC shown.  (A) Participants color-coded by the number of close neighbors as defined by Euclidean 390 
distance<0.1 in PCs 1-5.  (B) Kernel density estimation with peaks showing high density clusters of 391 
participants in PC space.  (C) High density clusters of genetically similar participants shown as groups 1-7.    392 
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 393 

Figure 2.  Continental genetic ancestry.  (A) Genomic PCA with All of Us participants shown in gray and 394 
global reference population samples color-coded as shown in the key.   Left panels show PC1 versus PC2 395 
comparisons, and right panels show PC1 versus PC3 comparisons, with the percent of variance explained 396 
by each PC shown.  (B) Genetic ancestry proportions for All of Us participants stratified by the genetic 397 
similarity groups shown in Figure 1C.  Average ancestry proportions are shown above each group, and 398 
numbers of participants are shown below each group.  The remaining participants are individuals that did 399 
not fall into a dense PCA cluster.  400 
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 401 

Figure 3.  Subcontinental genetic ancestry.  Subcontinental genetic ancestry proportions for All of Us 402 
participants from African, American, East Asian, South Asian, and European continental ancestry groups.  403 
Subcontinental groups (regions) for each continental ancestry group are color-coded as shown.  404 
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 405 

Figure 4.  Genetic ancestry by geography.  Genetic ancestry proportions are shown for All of Us 406 
participants sampled from the fifty US states and Puerto Rico.  (A) All participants and ancestry 407 
components.  (B) Non-European genetic ancestry proportions for all individuals with <90% European 408 
ancestry.  The results for states shaded in grey are suppressed owing to <20 participants with <90% 409 
European ancestry.    410 
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 411 

Figure 5.  Genetic admixture by age.  Genetic admixture entropy (y-axis) against participant age (x-axis).  412 
Ages shown in 100 bins with average and 95% CI values shown.  Linear regression trend line shown with 413 
95% CI shaded.  414 
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