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Abstract 
Summary: Human immunodeficiency virus (HIV) remains a public health threat, with drug resistance being a major concern in HIV treatment. 
Next-generation sequencing (NGS) is a powerful tool for identifying low-abundance drug resistance mutations (LA-DRMs) that conventional 
Sanger sequencing cannot reliably detect. To fully understand the significance of LA-DRMs, it is necessary to integrate NGS data with clinical 
and demographic data. However, freely available tools for NGS-based HIV-1 drug resistance analysis do not integrate these data. This poses a 
challenge in interpretation of the impact of LA-DRMs, mainly for resource-limited settings due to the shortage of bioinformatics expertise. To 
address this challenge, we present HIVseqDB, a portable, secure, and user-friendly resource for integrating NGS data with associated clinical 
and demographic data for analysis of HIV drug resistance. HIVseqDB currently supports uploading of NGS data and associated sample data, 
HIV-1 drug resistance data analysis, browsing of uploaded data, and browsing and visualizing of analysis results. Each function of HIVseqDB cor
responds to an individual Django application. This ensures efficient incorporation of additional features with minimal effort. HIVseqDB can be 
deployed on various computing environments, such as on-premises high-performance computing facilities and cloud-based platforms.
Availability and implementation: HIVseqDB is available at https://github.com/AlfredUg/HIVseqDB. A deployed instance of HIVseqDB is avail
able at https://hivseqdb.org.

1 Introduction
Human immunodeficiency virus (HIV) remains a public 
health threat, with drug resistance being a major concern in 
HIV treatment (Chimukangara et al. 2017). Genotypic test
ing is used to determine drug resistance, by analyzing the ge
netic sequence of the virus to identify drug resistance 
mutations. Next-generation sequencing (NGS) can identify 
low-abundance drug resistance mutations (LA-DRMs), 
which could be associated with poor treatment outcomes and 
cannot reliably be detected by traditional Sanger sequencing 
(�Avila-R�ıos et al. 2020). To understand the impact of LA- 
DRMs in different geographical and clinical settings, it is nec
essary to integrate clinical and epidemiological data with 
next-generation sequence data (Mbunkah et al. 2020). 
Furthermore, LA-DRMs have been demonstrated to exhibit a 
wide range of mutational load (calculated as the product of 
viral load and mutation frequency), highlighting the impor
tance of incorporating viral load when evaluating the impact 

of LA-DRMs (Gupta et al. 2014). Moreover, the impact of 
LA-DRMs on the occurrence of treatment failure varies 
across distinct drug classes and patient populations (Li et al. 
2021). This underscores the importance of considering demo
graphics and clinical information while assessing the role of 
LA-DRMs in treatment response.

However, available tools for NGS-based HIV-1 drug resis
tance analysis, such as HyDRA web and HIVdb-NGS, do not 
integrate sample data with NGS data.

We present HIVseqDB a portable, secure, and user-friendly 
resource for storing NGS data with associated clinical and de
mographic data. The resource can be deployed as a local in
stance. This ensures data security and proper control of 
sample metadata provenance, reliable connectivity in settings 
with unreliable internet coverage, enables exploratory data 
analysis ahead of sharing data publicly, can be useful for 
training purposes in resource-limited circumstances (Jjingo 
et al. 2022), and improves analysis turn-around-times. The 
resource can be adopted by different HIV-1 sequencing 
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laboratories on platforms that are deemed secure enough and 
accessed by authorized personnel.

2 Methods
2.1 Back-end architecture
The physical architecture of HIVseqDB is shown in Fig. 1. 
HIVseqDB is built on Django (https://www.djangoproject. 
com), an open-source PYTHON web framework, which fol
lows a model-view-template pattern; where, the model man
ages the data, the view displays the data to the user, and the 
template defines the structure of the user interface. Currently, 
the platform consists of four main components; (i) authenti
cation, (ii) data upload and storage of NGS data along with 
associated sample metadata, (iii) HIV-1 drug resistance 

analysis, and (iv) browser for data exploration and analyses. 
These components are implemented as individual applica
tions that communicate with each other to ensure easy cus
tomization and the addition of more functionalities with 
minimal effort. PostgreSQL is used as the main database 
management system for data storage. Celery (https://docs.cele 
ryq.dev) is used as a task queue to manage background tasks 
with Redis (https://redis.io/) as the message broker and a 
caching layer to improve performance. The background tasks 
primarily include drug resistance analysis, which is handled 
by quasitools (https://phac-nml.github.io/quasitools/), sierra
local (Ho et al. 2019), and R package jsonlite. Nginx (https:// 
www.nginx.com) is used as a reverse proxy server to handle 
incoming requests and their distribution to appropriate com
ponents. These components are all packaged using Docker 
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Figure 1. Schematic architecture of HIVseqDB: authenticated users upload data (NGS data and corresponding sample data) to the database. Uploaded 
data are accessible through the data browser. The analysis layer takes up FASTQ files as input and sends results to database. Machine readable outputs, 
data tables, and interactive visualizations are generated and are accessible through the analyses browser.
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Compose (https://docs.docker.com), which makes it relatively 
easy to manage and deploy HIVseqDB across various com
puting environments.

2.2 User interface and access control
The design of HIVseqDB is focused on creating a user- 
friendly, and engaging experience for users. We used a variety 
of front-end frameworks and libraries, which include 
Bootstrap (https://getbootstrap.com) for pre-built user inter
face components and styles that are responsive and easy to 
use, Data Tables (https://datatables.net) for easy display of 
tabular data in a flexible and user-friendly way, Django 
crispy forms for streamlined form design, and Highcharts 
(https://www.highcharts.com) for dynamic and interactive 
visualizations, to make the data more engaging and easier to 
understand. Users of HIVseqDB are required to login using 
credentials assigned by the administrator of the resource. 
Logged in users have access to the data uploads, can create 
analyses, and browse uploaded data and analyses. Guest 
users have access to the home page and the documentation 
of HIVseqDB.

2.3 Data management
To ensure that ethical considerations regarding data usage 
are meticulously addressed, we emphasize that all data 
should be anonymized and de-identified before uploading it 
to HIVseqDB. The database consists of three components; (i) 
sample data, which includes; sample collection date, sample 
type, sample tissue; the demographics (age, gender, literacy, 
employment, country, city, marital status, and risk factors), 
clinical data (regimen, date of regimen initiation, viral load, 
CD4 counts, days post infection, and health status), (ii) NGS 
data, which includes; the project ID, sequencing technology, 
sequencing platform, sequencing date, sequenced region of 
HIV-1 genome (e.g. integrase, reverse transcriptase, protease, 

whole genome, env, pol, and gag), the path to the corre
sponding FASTQ files, and (iii) drug resistance analysis 
results (Fig. 2). The data schema of HIVseqDB was developed 
with reference to similar resources, such as RHIVDB 
(Tarasova et al. 2021), PANGEA database (Abeler-D€orner 
et al. 2019), and Los Alamos HIV sequence database (Foley 
et al. 2018). Data are stored in a PostgreSQL database except 
for NGS data, which are stored as flat FASTQ files on the file 
system, with corresponding file paths stored in a PostgreSQL 
database. Considering the sensitivity of participant parame
ters stored within HIVseqDB, it is essential to underscore 
that HIVseqDB is specifically deployed on platforms that 
meet stringent security standards to ensure robust protection 
of participants’ data integrity.

2.4 HIV-1 drug resistance analysis
The platform provides a page for creating a new analysis, 
which requires a user to specify the data to be analyzed, and 
parameter values for the different stages of the analysis. The 
NGS data are passed to quasitools for quality control, align
ment to reference genome, HIV variant calling, and generat
ing consensus sequences. Sierralocal, a local implementation 
of the Stanford HIVdb database algorithm is used for infer
ring drug resistance mutations based on the consensus 
sequences. JSON files generated by sierralocal are processed 
in R programming interface using R package jsonlite. We use 
PYTHON libraries JSON, NumPy, and Pandas for numerical 
computations and data manipulation. Django HTML tem
plates are used to generate drug resistance reports. The drug 
resistance report shows the susceptibility of a given sample to 
a particular antiretroviral drug as shown in Supplementary 
Fig. S1. In addition, HIVseqDB generates a comprehensive re
port showing all identified variants at mutation frequencies 
of 1%–100% of the viral population. Data Tables library is 
used to create interactive tables with pagination and data 
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Figure 2. Database schema of HIVseqDB. PK, primary key; FK, foreign key.
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export functions. Highcharts, a JavaScript library is used to 
generate interactive visualizations. These plots show muta
tion frequency and mutational load for drug resistance var
iants identified in the protease, reverse transcriptase, and 
integrase regions, the prevalence of resistant variants at dif
ferent viral load ranges, and drug resistance levels across 
drug classes for different age groups (Fig. 3).

3 Results
We built a portable, effective, and efficient resource for man
agement of HIV-1 NGS data along with associated sample 
data for analysis of HIV drug resistance. HIVseqDB can be 
used to provide insights into the relationship between LA- 
DRMS and clinical/demographic factors. The resource is 
powered by open-source tools endowed with layers of se
quence analysis and result visualization capabilities.

3.1 Installation of HIVseqDB
The platform is distributed along with a Docker-compose file 
that enables smooth installation and deployment across com
puting environments that support Docker; including 
Windows, Linux, and MacOS platforms. Installation guide
lines are available at https://alfredug.github.io/HIVseqDB/.

3.2 Real world utility of HIVseqDB
To demonstrate the utility of HIVseqDB, we obtained a pub
licly available dataset from the European Nucleotide Archive, 
Bioproject accession PRJNA340290 and sample metadata 
obtained from a corresponding publication (Avila-R�ıos et al. 
2016). The dataset comprised paired-end sequence data from 
24 samples, with an average of 141 579 reads per 
FASTQ file.

Figure 3. Drug resistance plots. (top) Bar plots showing the prevalence of drug resistant variants of protease inhibitors at different viral load levels. The 
height of the bars indicates the number of samples in which a particular variant was detected. Bars are colored by the viral load levels. (bottom) Drug 
resistance to reverse transcriptase inhibitors. The height of the bars indicates the number of samples at a certain susceptibility level. Bars are colored by 
age group.
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3.3 Runtime analysis
Analysis was performed on a standalone 64-bit workstation 
with 16 GB RAM and an Intel Core i7, 2.3 GHz processor. 
Using a network with average internet speed of 131 Mbps, 
Docker-compose took an average of 17 min to install 
HIVseqDB and its dependencies. For the dataset mentioned 
in 3.2 above, it required an average of 4 min per sample to 
upload, analyze, and generate analysis results.

4 Conclusion
HIVseqDB resource provides a portable, secure, and user- 
friendly platform with low computational resource requirements 
for integrating NGS data with clinical and demographic data to 
analyze HIV drug resistance. It is scalable and can be adapted 
for other viruses with NGS data. The resource employs Docker 
for portability, making it easy to deploy on a variety of comput
ing environments, including on-premises high-performance 
computing platforms and cloud-based services.
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