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A convergence of novel genome analysis technologies is

enabling population genomic studies of human transposable

elements (TEs). Population surveys of human genome

sequences have uncovered thousands of individual TE

insertions that segregate as common genetic variants, i.e. TE

polymorphisms. These recent TE insertions provide an

important source of naturally occurring human genetic

variation. Investigators are beginning to leverage population

genomic data sets to execute genome-scale association

studies for assessing the phenotypic impact of human TE

polymorphisms. For example, the expression quantitative trait

loci (eQTL) analytical paradigm has recently been used to

uncover hundreds of associations between human TE insertion

variants and gene expression levels. These include population-

specific gene regulatory effects as well as coordinated changes

to gene regulatory networks. In addition, analyses of linkage

disequilibrium patterns with previously characterized genome-

wide association study (GWAS) trait variants have uncovered

TE insertion polymorphisms that are likely causal variants for a

variety of common complex diseases. Gene regulatory

mechanisms that underlie specific disease phenotypes have

been proposed for a number of these trait associated TE

polymorphisms. These new population genomic approaches

hold great promise for understanding how ongoing TE activity

contributes to functionally relevant genetic variation within and

between human populations.
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Introduction
Transposable elements (TEs) are distinguished by their

ability to move, i.e. transpose, among genomic locations,
www.sciencedirect.com 
often making copies of themselves as they go. TEs can

replicate to extremely high copy numbers over time; at

least 50% of the human genome sequence is thought to be

derived from TE insertions [1,2]. The abundance of TE

sequences, along with their ability to colonize a seemingly

endless variety of host genomes, begs an explanation for

their evolutionary success. The selfish DNA theory holds

that TEs are genomic parasites, which play no functional

role for their hosts and exist simply by virtue of their

ability to out-replicate the genomes in which they reside

[3,4]. The selfish DNA theory is still widely considered to

represent the null hypothesis that best explains the

presence of TEs from an evolutionary standpoint. Nev-

ertheless, numerous studies have revealed instances of

exaptation [5], also referred to as molecular domestication

[6], whereby formerly selfish TE sequences have been

co-opted to provide some functional utility for their host

genomes. The most widely observed route of molecular

domestication entails the conversion of TE sequences

into host genome regulatory elements [7–9].

TE-derived sequences provide a wide variety of regula-

tory elements to the human genome, including promoters

[10–12], enhancers [13,14�,15–17], transcription termina-

tors [18] and several classes of small RNAs [19–21].

Human TE-derived sequences can also exert higher

order influences on gene regulation by shaping chromatin

structure across the genome [22–26]. It is important to

note that, until this time, nearly all studies on human TE

regulatory elements have focused on TE-derived

sequences that are remnants of relatively ancient inser-

tion events and no longer capable of transposition.

Accordingly, known human TE regulatory sequences

largely correspond to so-called ‘fixed’ TE insertions,

which are found at the same genomic insertion site

locations within the genomes of all human individuals.

This distinction is critical, since fixed TE insertions are

not expected to contribute to regulatory variation among

individual humans. In other words, fixed TE regulatory

elements, while functionally important, do not provide a

source of human population genetic variation.

Over the last several years, a convergence of genome-

enabled technologies has begun to power studies that are

focused squarely on structural variations generated by the

ongoing activity of human TEs. There are several fami-

lies of human TEs that retain the ability to transpose,

primarily Alu [27,28], L1 [29,30], and SVA [31,32]. Alu

and SVA elements are non-autonomous SINEs (Short

Interspersed Nuclear Elements), which are mobilized in
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trans by the transposition machinery encoded from auton-

omous LINEs (Long Interspersed Nuclear Elements) of

the L1 family. Smaller numbers of HERV-K endogenous

retroviruses also remain active in the human genome [33].

When members of these TE families transpose within the

human genome, they generate inter-individual variations
Figure 1
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that segregate within and between populations in the

form of TE insertion site polymorphisms. Given the

known regulatory properties of human TEs, it is not

unreasonable to expect that segregating TE polymor-

phisms could have significant regulatory consequences.

In particular, some human TE polymorphisms may lead
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dividuals sampled from human populations are characterized using

me-wide TE insertion genotypes are compared to tissue-specific gene

linkage disequilibrium patterns (LD) among TE polymorphisms and

tion study (GWAS) loci. Interrogation of functional information is used
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to differences in gene expression patterns between indi-

viduals. Furthermore, human regulatory variation gener-

ated by recent TE activity may have important implica-

tions for health and disease. This mini-review is focused

on recent studies that are beginning to shed light on the

ways in which ongoing TE activity can impact human

health via changes in genome regulation. These studies

are distinguished by their population level approach to

the study of TE generated human variation (Figure 1).

Genome-enabled approaches for
characterizing TE insertion variants
Two distinct classes of genome-enabled approaches for

the characterization of TE insertion variants have

emerged over the last several years [34�]: (1) bioinformat-

ics methods that rely on the analysis of whole genome

sequence data to find TE insertions that differ from a

reference sequence (Figure 2A), and (2) high-throughput

experimental methods that utilize next-generation

sequencing to pinpoint the locations of novel TE inser-

tions (Figure 2B).

Computational approaches for the discovery of TE inser-

tion variants rely on one of two methods: (1) discordant

read-pair mapping for short read sequencing technology,

or (2) split read mapping for long read technology [35�].
Our own group recently performed a benchmarking study
Figure 2
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on 21 bioinformatics tools designed for detecting human

TE insertion variants from whole genome sequence data

[36��]. After an initial screen of tools that were found to be

unreliable, or no longer maintained, our study focused on

seven programs: ITIS [37], MELT [38�], Mobster [39],

RetroSeq [40], Tangram [41], TEMP [42], and T-lex2

[43]. We found MELT to have superior performance for

human TE variant detection from whole genome

sequence data, but also show how a combined approach

using two or more methods, including Mobster and Retro-

Seq, could yield superior performance. Since the publi-

cation of our paper, two new computational tools for TE

insertion discovery have been published. The program

STEAK [44] claims superior performance compared to

existing short read methods, whereas LoRTE [45] is

designed for PacBio1 long read sequence technology.

At this time, given the predominance of Illumina1 short

read sequencing technology, discordant read-pair map-

ping approaches are most widely used. It should be noted

that some short read methods also employ split, clipped,

or insertion junction reads, in addition to discordant read-

pair mapping, as part of their TE detection protocols.

Nevertheless, these short read methods are still far from

perfect and there is substantial room for additional devel-

opment in the field. As long read sequencing technology

becomes more widespread, split read approaches should
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become more popular. Perhaps more importantly, we

expect that split read approaches with long reads will

be inherently more accurate and reliable than discordant

read pair mapping, since long reads that span entire TE

insertions should be mapped with much less ambiguity

than shorter reads. Long reads should also help to disam-

biguate complex structural variants resulting from nested

TE insertions.

High-throughput experimental techniques for TE variant

detection also share several basic features: (1) DNA

fragmentation, (2) TE enrichment, and (3) TE calling.

The methods are distinguished by the approaches used

for each step of the process. DNA fragmentation can be

achieved via enzymatic digestion or by mechanical shear-

ing. TE enrichment can be performed using PCR, with

active TE-specific primers, or with hybridization to active

TE-specific probes. Finally, TE calling is done using

next-generation sequencing, for more recent methods,

or with tiling arrays for the older methods. The most

widely used experimental methods for TE variant detec-

tion include ME-Scan [46], L1-Seq [47], RC-seq [48], and

Transposon-Seq [49]. One area of ongoing improvement

for these methods entails the refinement of algorithms

used to map enriched TE fragments to genome reference

sequences. For example, the TIPseqHunter algorithm

was recently developed to refine and improve human TE

variant calls made by the existing TIP-seq experimental

method [50].

Genome-scale experimental approaches of this kind have

been most widely applied to the study of somatic TE

variants that characterize cancer tissues. This is one of the

most promising areas of recent human TE research, and it

has been extensively reviewed elsewhere [51�]. This

mini-review is focused instead on germline mutations

that yield inter-individual differences in TE insertion

patterns and manifest themselves as human population

genetic variations, i.e. TE polymorphisms.

TE polymorphisms and human genome
regulation
Our own group recently published a population-level

view of the regulatory consequences of recent human

TE activity [52��]. For this study, we adopted the expres-

sion quantitative trait loci (eQTL) analytical paradigm for

the analysis of human TE polymorphisms. eQTL are

genomic variants associated with changes in gene expres-

sion levels [53]. The eQTL approach requires multiple

individual samples that have been deeply characterized at

both the genomic (DNA-seq) and transcriptomic (RNA-

seq) levels. Gene expression levels for individual samples

are regressed against locus-specific genotypes for

matched individuals to uncover eQTL associations. This

approach was developed for single nucleotide polymor-

phism (SNP) genotypes, whereas in our case, we used

locus-specific TE insertion state genotypes. TE insertion
Current Opinion in Genetics & Development 2018, 49:25–33 
genotypes at any locus can be encoded as 0 (homozy-

gous — insertion absent), 1 (heterozygous — one inser-

tion present), or 2 (homozygous — two insertions pres-

ent). Differences in gene expression levels across these

distinct TE insertion states are indicative of TE poly-

morphism-to-gene expression associations (Figure 1). For

the case of either SNPs or TE genotypes, the eQTL

approach depends critically on the reliability of individual

variant calls. Extensive benchmarking of SNP and TE

variant callers has been performed, for example as part of

the 1000 Genomes Project (1KGP), as previously

described [54,55��]. As is standard for this kind of analysis,

we only use variant calls that have been validated, includ-

ing avoiding low frequency variants, for the purposes of

eQTL analysis [52��].

This approach was powered by the 1KGP, phase 3 of

which entailed the genome-wide characterization of TE

insertion genotypes for 2504 individuals across 26 human

populations [54,55��]. B-lymphocyte gene expression

data, derived from EBV-transformed lymphoblastoid cell

lines or LCLs, for 445 of the same 1KGP individuals,

representing one African population and four European

populations, were taken from the Genetic European

Variation in Health and Disease (GEUVEDIS) RNA-

seq project [56]. Merging data from both projects allowed

us to directly compare TE insertion site genotypes to

gene expression levels from the same individuals. Fur-

thermore, comparison of results for African and European

populations allowed us to uncover population-specific

regulatory effects of human TE polymorphisms.

Regression of gene expression against TE insertion site

genotypes revealed hundreds of eQTL associations, and

TE-eQTL were found both within and between the

African and European populations. A number of TE

polymorphisms were shown to be associated with expres-

sion differences between population groups. One advan-

tage of using TE insertion site genotypes for eQTL

analysis is that the relatively low number of common

TE genotypes across the genome (�16 000) allows for

both cis and trans eQTL analysis. This is because the

number of possible eQTL associations is the product of

the number of genes and the number of variants being

compared; accordingly, the analysis of millions of SNPs

times thousands of genes presents a combinatorically

daunting bioinformatics analysis challenge. For this reason,

most SNP eQTL studies focus exclusively on cis SNPs that

are found within or in close proximity to individual genes.

Since our study was not limited in this way, we were able to

discover many trans associations of TE polymorphisms

with human gene regulation. In fact, we were surprised to

find that trans regulatory effects for TE polymorphisms

were even more common than cis effects.

For one particular example, the B cell specific transcrip-

tion factor PAX5, we uncovered a potential mechanism
www.sciencedirect.com
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Figure 3
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The impact of TE polymorphisms on gene regulatory networks. The eQTL approach is used to discover associations between TE insertion variants

and tissue-specific gene expression levels (i.e. TE-eQTLs). A TE insertion variant found in cis to a transcription factor (TF) can lead to coordinated

changes across a gene regulatory network via transitive effects on downstream targets of the TF. An example is shown, similar to what has been

observed for the TF gene PAX5, where TE associated increase in the expression of a TF leads in turn to increased expression of the TF target

genes. This will reveal itself as multiple trans TE-eQTL associations for the same TE insertion variant.
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Figure 4
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TE insertion variants impact on human disease via gene regulatory

changes. TE insertion variants are found in tight linkage disequilibrium

(LD) with previously characterized genome-wide association study

(GWAS) SNP risk alleles. The linked TE insertion variant is associated

with reduced gene expression, which is in turn associated with

elevated disease risk. The scheme shown here corresponds to a TE

insertion variant associated with reduced expression of the B4GALT1

gene, which leads to increased inflammation and related disease

pathology.
that could explain the numerous trans TE-eQTL that we

observed (Figure 3). This example also underscores how

individual TE loci can participate in the rewiring of entire

regulatory networks. The PAX5 gene has a cis Alu eQTL

that is associated with increased expression in B lympho-

cytes. This same Alu insertion is associated with

increased expression of numerous PAX5 target genes,

presumably by virtue of a transitive effect whereby

increased PAX5 expression in turn increases the expres-

sion of downstream targets in its regulatory network.

To our knowledge, this is the first and only study of its

kind in humans. However, analogous genome-scale

approaches have been used to discover TE associations

with gene expression in the model organisms Arabidopsis

[57] and maize [58]. It is important to point out that the

eQTL results summarized here are very much cell-type

dependent. Expansion of this kind of eQTL analysis to

multiple cell and tissue types is expected to reveal

distinct TE-gene regulatory effects. The recently com-

pleted Genotype-Tissue Expression (GTEx; https://

www.gtexportal.org/) project provides eQTL data for

more than 50 cell/tissue types, providing a tremendous

opportunity for further work of this kind.

TE polymorphisms and complex common
disease
Two studies published in 2017 have taken a similar

population-level view of the phenotypic effects of human

TE polymorphisms [59��,60��]. For each of these studies,

associations between TE insertion site genotypes and

complex common diseases were explored. Both studies

relied on the analysis of linkage disequilibrium (LD)

patterns to discover TE polymorphisms linked to SNPs

that were previously associated with health or disease

related phenotypes via genome-wide association studies

(GWAS). An implicit rationale for genome-scale surveys

of this kind is the notion that TE insertions are expected

to be more disruptive than SNP variations given the larger

scale genomic changes that they entail. Interestingly,

both studies report that TE polymorphisms are enriched

at GWAS loci, highlighting their potential impact. The

first study of this kind, from the group of Kathleen Burns,

found 44 Alu insertions in tight LD with previously

discovered GWAS trait associated SNPs [59��]. The

authors pointed out that this represents a >20-fold

increase over the number of polymorphic Alu insertions

that were previously known to be associated with human

phenotypes, thereby underscoring the power of popula-

tion genomic approaches for studies on the phenotypic

impact of TE polymorphisms. Furthermore, the impli-

cated Alu polymorphisms were found to be associated

with a very broad range of health and disease related

phenotypes.

Our own study on the impact of TE polymorphisms on

complex common disease was designed to explore the
Current Opinion in Genetics & Development 2018, 49:25–33 
connection between TE-mediated genome regulation

and disease related phenotypic effects [60��]. To achieve

this aim, we used a progressive set of genome-wide

bioinformatics screens that searched for polymorphic

TE insertions that are: (1) found in LD with known

GWAS SNPs, (2) located within tissue-specific enhan-

cers, and (3) associated with tissue-specific gene expres-

sion levels. We further narrowed our search for candidate
www.sciencedirect.com
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TE polymorphisms to those associated with genes with

blood or immune related functions, consistent with the

fact that the gene expression data we analyzed is from B

lymphocytes. This progressive and stringent genomic

screen uncovered six TE polymorphisms that are likely

to be associated with disease phenotypes by virtue of their

gene regulatory effects. These included both Alu ele-

ments, as previously reported, as well as SVA elements.

For example, we discovered an SVA insertion in the cell-

type specific enhancer of the B4GALT1 gene (Figure 4).

B4GALT1 acts to convert the Immunoglobulin G (IgG)

antibody from a pro-inflammatory to an anti-inflammatory

form. The SVA insertion is associated with both down-

regulation of the B4GALT1 gene, thereby potentially

leading to increased inflammation, and is linked to a

genomic region implicated by GWAS in both inflamma-

tory conditions (Crohn’s disease) and autoimmune dis-

ease (systemic lupus erythematosus).

Conclusions
One important caveat regarding the surveys of the effects

of TE polymorphisms on human gene regulation and

disease reviewed here relates to the fact that they rely on

association studies. While this class of approaches has

great potential to reveal connections between TE gener-

ated variation and health related phenotypes, association-

based methods do not necessarily uncover causal variants

(i.e., correlation 6¼ causation). In this sense, the TE-phe-

notype associations uncovered by these studies are per-

haps best considered as hypotheses, which will need to be

further interrogated by experimental studies in order to

provide deeper insight into causality and mechanism.

Accordingly, one expectation is that these kinds of

large-scale association studies can substantially narrow

the experimental search space, with respect to possible

TE-phenotype interactions, and thereby serve as a valu-

able point of departure for subsequent work.

The population genomics view of TEs exemplified by the

recent studies reviewed here has the potential to expand

our understanding of the phenotypic impact of human

TEs. While ongoing human TE activity has widely been

considered to be deleterious, the presence of TE inser-

tion variants that segregate as common polymorphisms

among human populations indicates that many novel TE

insertions must have escaped the action of purifying

selection. Accordingly, polymorphic human TE insertion

variants comprise an important source of naturally occur-

ring genetic variation with subtle effects on genome

regulation and human health. Functionally relevant TE

polymorphisms of this kind are likely to provide crucial

source material for ongoing human evolution.
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