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Abstract
We analyzed the chicken (Gallus gallus) genome sequence to search for previously uncharacterized
endogenous retrovirus (ERV) sequences using ab initio and combined evidence approaches. We
discovered 11 novel families of ERVs that occupy more than 21 million base pairs, approximately
2%, of the chicken genome. These novel families include a number of recently active full-length
elements possessing identical long terminal repeats (LTRs) as well as intact gag and pol open reading
frames. The abundance and diversity of chicken ERVs we discovered underscore the utility of an
approach that combines multiple methods for the identification of interspersed repeats in
vertebrate genomes.

Reviewers: This article was reviewed by Igor Zhulin and Itai Yanai.

Findings
Chicken, a modern descendant of the dinosaurs, is the
first avian to have its genome sequenced [1]. Phylogenet-
ically, its position between fish and mammals provides
valuable insight into the evolution of vertebrates. The
chicken genome has a size of 1.2 billion bases, approxi-
mately one third of the size of the human genome.

The overall interspersed repeat, i.e. transposable element
(TE), content of the chicken genome was determined to
be less than 9% [1]. This fraction is considerably lower
than that of mammalian genomes, where transposable
elements (TEs) account for 40–50% of genomic
sequences [2-4]. While chicken has long been a model sys-
tem for the study of retroviruses [5], a mere 1.3% of the
chicken genome can be classified as endogenous retrovi-
ruses (ERVs) compared to about 5% in humans [3]. Nev-
ertheless, protein coding sequences still make up only a
minor fraction of the chicken genome leaving a substan-
tial quotient that has yet to be been accounted for. The

authors of the initial analysis of the chicken genome pos-
ited that much of the uncharacterized sequence was likely
to be derived from unrecognized TEs [1]. Indeed, novel or
previously uncharacterized TE sequences may be missed
by homology-based methods for the detection of repeats,
such as the widely used RepeatMasker program [6], which
rely on the comparison of genomic sequences to libraries
of known repeat consensus sequences. Ab initio methods,
on the other hand, identify repeats by virtue of their struc-
tural characteristics without regard to any sequence simi-
larity to known elements. We used a combination of ab
initio detection, sequence similarity searches, motif identi-
fication and evaluation of element structural (repeat) fea-
tures to search for novel ERVs that may have been missed
in the initial analysis of the chicken genome.

LTR_STRUC was the first ab initio program designed to
detect long terminal repeat (LTR) containing elements,
such as ERVs, in genomic sequence [7]. Briefly,
LTR_STRUC works by sliding a window along genomic
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sequence and looking for direct repeats that are spaced
apart within a specified size range (e.g. 5–10 kb). After
identifying putative LTRs in this way, it searches for other
characteristic features of LTR elements such as target site
duplications, inverted repeats at LTR termini, primer
binding sites and poly purine tracts. Based on these fea-
tures, it predicts the direction of the LTR element and pro-
vides the corresponding three frame translation of the
reverse transcriptase (RT) sequence in the internal region
of the element. LTR_STRUC has proven effective at identi-
fying novel LTR elements, including ERVs, in chimpanzee
[8], mouse [9] and rice genome sequences [10].

LTR_STRUC was run on the 2004 build of the chicken
genome sequence, i.e. the v1.0 draft assembly from the
Washington University Genome Sequencing Center [1]
distributed on the UCSC Genome Browser [11], resulting
in the detection of 39 putative full-length LTR elements.
RT homologous sequences were identified in these ele-
ments and used as queries in TBLASTN [12] searches
against the chicken genome sequence. The BLAST output
and flanking genomic sequences were visually inspected
to look for ERV characteristic features such as LTRs, target
site repeats and terminal inverted repeats. LTRs are direct
repeats at the 5' and 3' termini of the ERVs that are
~200–350 bp in length. Characteristic dinucleotide termi-
nal inverted repeats are found at the beginning (TG) and
ends (CA) of ERV LTRs. Target site repeats are short (4–6
bp) direct repeats found immediately upstream and
downstream of ERV insertions that result from resolution
of a staggered break that is made when the elements inte-
grate in the genome. We identified a total of 89 putative
ERVs in the genome using the combined ab initio,
sequence similarity and element feature detection
approach. The presence of intact open reading frames that
encode sequences that have significant sequence similar-
ity to RT along with the canonical RT catalytic motif [13]
were used to validate 61 of these cases as intact full-length
ERVs.

Phylogenetic analysis of an RT nucleotide sequence align-
ment was used to classify the chicken ERV sequences that
we identified. ERV phylogenies were built using the neigh-
bor-joining and maximum parsimony methods imple-
mented in the program MEGA [14] and maximum
likelihood using the program PhyML [15]. For neighbor-
joining and maximum parsimony 1,000 bootstrap repli-
cates were run to assess the support for internal branches
on the phylogeny, and the approximate likelihood ratio
test [16] was used to evaluate the support for branches
along the maximum likelihood tree. The ERV phylogeny
shows a number of well resolved groups that correspond
for 14 distinct families of chicken ERVs, 11 of which are
described here for the first time (Figure 1). In the absence
of a standard naming convention for viral families in the

chicken genome, we named the families using
GGERVNN, for Gallus gallus endogenous retrovirus fol-
lowed by the family number. We also reported the new
families to Repbase [17] where they constitute nearly half
(8 out of 17) of all the ERV families known for the chicken
genome.

The 11 new ERV families we discovered using LTR_STRUC
and BLAST analysis include 48 full-length elements and
1,542 fragmented sequences, most of which are solo LTRs
that result from intra-element LTR-LTR recombination.
When representatives of the 11 novel families were used
to search the chicken genome for homologous sequences
using the RepeatMasker program [6], they hit ~21 mega-
bases of ERV sequence, or 2.0% of the genome. Together,
the previously characterized and newly characterized
ERVs represent more than 30 megabases of sequence and
2.9% of the chicken genome, a substantial increase over
the previous figure of 1.3% of ERV sequences.

GGERV21, GGERV22 and GGERV30 are the most abun-
dant lineages and account for more than half of all the
viral sequences in the genome. However, only a few full-
length elements were found for these abundant families;
most of their sequences exist as fragments or solo LTRs.
These abundant families are most closely related to the
Birdawg and Kronos LTR elements previously identified as
high copy number elements using cot-based sequencing
and analysis of the chicken genome [18]. However, we did
not identify any full-length elements corresponding to the
Hithcock or Soprano LTR elements identified in the same
study.

The LTRs at the 5' and 3' ends of a full-length ERV
genomic sequence are generated from a single template
during reverse transcription of RNA into DNA [19]. There-
fore, at the moment that a full-length ERV integrates into
the genome, its 5' and 3' LTRs are expected to be identical
in sequence, and intra-element sequence differences
between LTRs can be used to estimate the time that has
elapsed since an element was active [20]. The ages of
chicken ERVs were estimated in this way using the for-
mula t = d/2r, where t is the time since insertion, d is the
nucleotide sequence divergence per site between 5' and 3'
LTRs of a single element and r is the rate of nucleotide
substitution per site per million years. The value of r used
here, 7.5 × 10-4, is based on comparisons of nuclear genes
among four avian taxa [21].

Age ranges for the 11 novel ERV families we detected are
shown in Figure 1. The youngest family of chicken ERVs is
GGERV10, which includes 10 full-length elements with 5'
and 3' LTRs that are either identical or differ by only 1 bp.
The GGERV10 family of element sequences integrated
from 0–3 million years ago. Full-length GGERV10 family
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Chicken endogenous retrovirus familiesFigure 1
Chicken endogenous retrovirus families. Phylogenetic analysis of an RT multiple sequence alignment for all full-length ele-
ments was used to delineate chicken ERV families. The neighbor-joining phylogeny is shown; maximum parsimony and maxi-
mum likelihood trees were also reconstructed. The names of the taxa (ERV sequences) correspond to the chicken 
chromosome number, strand, start and end coordinates from the May 2006 build, v2.1 draft assembly from the Washington 
University Genome Sequencing Center, found on the UCSC Genome Browser. Family names and characteristics for the 11 
novel ERV families discovered here are shown below the tree. Family copy numbers are indicated along with the family aver-
ages of intra-element percent identity between 5' and 3' LTRs and their age ranges (lower-to-upper bounds). For each family, 
percent support values are shown for the internal branch that subtends the family based on bootstrap analysis, for neighbor-
joining and maximum parsimony, and the approximate likelihood ratio test for maximum likelihood.

Min Max
Neighbour-
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GGERV10 220 5386 97 100 0 3 72 63 92
GGERV29 336 5568 36 97 0 17.9 99 58 80
GGERV12 240 7073 50 97 2.8 32.9 99 67 98
GGERV20 220 5150 79 96 0 59.1 83 63 95
GGERV28 351 5736 113 90 16.7 66.5 54 98 52
GGERV30 310 5308 152 92 24.6 77.9 56 68 79
GGERV21 322 7665 149 86 32.4 130.9 54 71 43
GGERV11 232 5328 86 90 63.2 102.9 99 96 98
GGERV23 244 4226 195 89 66.9 71 55 82 33
GGERV22 344 5714 626 84 102.7 131 97 83 84
GGERV24 318 7210 7 78 136.5 143.9 55 67 56
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members encode a ~1,600 base pair intact gag open read-
ing frame (ORF) and a ~3,300 base pair pol ORF that
encodes a polyprotein with homology to the protease, RT,
RNAseH and integrase enzymes that catalyze reverse tran-
scription. In other words, GGERV10 family members are
potentially active ERVs that were integrated into the
chicken genome very recently. Incidentally, the GGERV10
family is substantially younger than the GGERVLA (Figure
1) family that was previously described as the most
recently active family in the genome [1].

The next youngest family is GGERV29, with elements that
inserted 0–17.9 million years ago, and the oldest family
we identified is GGERV24 at 136.5–143.9 million years
old. This wide range of ages encompasses all newly discov-
ered and previously characterized chicken ERVs. Even
though the ab initio approach we used is best suited to find
relatively young elements with readily identifiable struc-
tural elements (i.e. LTRs), it was able to detect families
that were active hundreds-of-millions of years apart.

Using a combined evidence approach that integrates ab
initio element detection with sequence similarity searches,
motif identification and evaluation of element features we
detected 11 novel ERV families covering more than 21
megabases of previously uncharacterized chicken genome
sequence. Several of these families were fairly ancient,
consistent with the expectation that degenerated element
sequences may be missed by homology-based detection
methods. However, a number of the ERVs we identified
are members of young families that have been active very
recently in the chicken genome. These results underscore
the importance of integrating multiple methods [22] for
the detection of interspersed repeats in eukaryotic
genomes.
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