Supplementary Tables

Supplementary Table 1. This table is analogous to Table 1 but the data on all 20 amino acids are shown. For each amino acid, beneath the D value, the analogous value obtained with a correction taking into account possible substitutions on the path from the outgroup to the common ancestor of the sister genomes (see Supplementary Method), is shown. Asterisks mark D values which deviate significantly from 0 (P < 0.01; no correction for multiple tests was applied).

Toyon	Substitutions to and from an amino acid					
Taxon	Cys	Met	His	Ser	Phe	
Hominidae	137 / 72	324 / 204	297 / 206	633 / 586	231 / 115	
	+0.31*	+0.23*	+0.18*	+0.04	+0.34*	
	+0.30*	+0.14*	+0.10	+0.02	+0.32*	
Muridae	2547 / 1729	5920 / 4205	5702 / 4752	19904/18108	4461 / 3895	
	+0.19*	+0.17*	+0.09*	+0.05*	+0.07*	
	+0.18*	+0.06*	-0.00	-0.01	+0.09*	
Saccharomyces	778 / 430	1768 / 1455	1715 / 1606	7776 / 7567	1824 / 1546	
,,	+0.29*	+0.10*	+0.03	+0.01	+0.08*	
	+0.26*	+0.07*	-0.00	+0.01	+0.10*	
Pvrococcus	35 / 21	772 / 426	277 / 244	1756 / 1222	680 / 598	
,	+0.25	+0.29*	+0.06	+0.18*	+0.06	
	+0.34*	+0.16*	+0.08	+0.05*	+0.07*	
Escherichia	143/57	238 / 155	284 / 194	738 / 549	151 / 122	
	+0.43*	+0.21*	+0.19*	+0.15*	+0.11	
	+0.40*	+0.20*	+0.17*	+0.13*	+0.12	
Salmonella	67/11	127 / 81	122 / 74	365/216	84/57	
	+0.79*	+0.22*	+0.25*	+0.26*	+0.19	
	+0.59*	+0.16*	+0.10	+0.13*	+0.19	
Buchnera	75/35	166 / 102	191 / 105	654 / 587	249/164	
	+0.36*	+0.25*	+0.29*	+0.05	+0.21*	
	+0.28*	+0.12	+0.18*	-0.02	+0.13*	
Vibrio	4/0	22/15	16/10	64/52	18/17	
	+1.00	+0.19	+0.23	+0.10	+0.03	
	+0.46	+0.11	+0.08	-0.03	+0.08	
Pseudomonas	501/339	2985 / 1090	1737 / 1252	6289 / 4277	1956 / 1623	
1 ooudomondo	+0.19*	+0.47*	+0.16*	+0.19*	+0.09*	
	+0.16*	+0.25*	+0.11*	+0.08*	+0.09*	
Bordetella	89/14	104/66	113/75	301 / 153	50/51	
	+0.73*	+0 22*	+0.20*	+0.33*	-0.01	
	+0.71*	+0.22*	+0.20*	+0.32*	-0.01	
Helicobacter	15/11	48/20	55/24	93/75	31/28	
rendeballer	+0.15	+0 41*	+0.39*	+0 11	+0.05	
	+0.10	+0.15	+0.12	-0.05	+0.05	
Chlamvdia	107 / 59	212/137	249 / 150	911 / 761	238 / 160	
ernannyala	+0.29*	+0.22*	$+0.25^{*}$	+0.09*	+0.20*	
	+0.10	+0.11*	+0.08	-0.02	+0.14*	
Bacillus	235 / 126	960 / 722	910 / 739	2044 / 1861	802 / 692	
Duomao	$+0.30^{*}$	+0.14*	+0.10*	+0.05*	+0.07*	
	+0.25*	+0.10*	+0.05	+0.03	+0.08*	
Streptococcus	20/3	27/26	38/28	114/61	28/21	
	+0.74*	+0.02	+0.15	+0.30*	+0.14	
	+0.44	+0.03	-0.01	+0.15	+0.15	
Staphylococcus	10/1	32/23	30/25	97 / 75	44/31	
2.42.13.10000040	+0.83	+0.16	+0.09	+0.13	+0.17	
	+0.60	+0.12	-0.01	+0.05	+0.18	
Average D	+0.452	+0.219	+0.178	+0.135	+0.120	
S.E. of D	0.07	0.03	0.03	0.03	0.02	

Supplementary Table 1 Changes of frequencies of all amino acids in the 15 taxa

Supplementary Table 1 (continued)

	Substitutions to and from an amino acid				
laxon	Asn	Thr	lle	Val	Arg
Hominidae	340 / 277	504 / 524	525 / 450	725 / 674	570 / 670
	+0.10	-0.02	+0.08	+0.04	-0.08*
	+0.04	-0.04	+0.03	+0.04	-0.08*
Muridae	8238 / 8956	15045/12720	10458/11678	16810/14108	13228/ 9275
	-0.04*	+0.08*	-0.06*	+0.09*	+0.18*
	-0.03*	-0.00	-0.03*	+0.03*	+0.12*
Saccharomyces	5421 / 6069	5246 / 5849	6044 / 6019	6475 / 5638	4755 / 3023
	-0.06*	-0.05*	+0.00	+0.07*	+0.22*
	-0.08*	-0.06*	+0.01	+0.02*	+0.17*
Pyrococcus	1107 / 889	1081 / 970	3620 / 3555	3357 / 3185	2994 / 1932
,	+0.11*	+0.05	+0.01	+0.03	+0.22*
	+0.05*	+0.05*	-0.00	-0.00	+0.14*
Escherichia	491 / 262	638 / 564	638 / 364	686 / 643	298 / 374
	+0.30*	+0.06	+0.27*	+0.03	-0.11*
	+0.28*	+0.05	+0.27*	+0.02	-0.10*
Salmonella	198 / 140	295/218	336 / 211	362 / 343	155 / 171
	+0.17*	+0.15*	+0.23*	+0.03	-0.05
	+0.11	+0.05	+0.16*	+0.02	+0.00
Buchnera	452 / 587	350 / 275	839 / 1140	831 / 558	243/149
	-0.13*	+0.12*	-0.15*	+0.20*	+0.24*
	-0.11*	+0.01*	-0.08*	+0.07*	+0.17*
Vibrio	34 / 19	56/34	74/64	82/74	25/20
	+0.28	+0.24	+0.07	+0.05	+0.11
	+0.12	+0.09	+0.01	+0.04	+0.13
Pseudomonas	2912 / 1635	4589 / 2870	5705 / 3838	6328 / 6057	2389 / 4267
	+0.28*	+0 23*	+0 20*	+0.02	-0.28*
	+0.14*	+0.10*	+0.08*	+0.02	-0.09*
Bordetella	98/61	287 / 183	140 / 74	301/260	130 / 237
20100000	+0.23*	+0.22*	+0.31*	+0.07	-0.29*
	+0.22*	+0.22*	+0.31*	+0.07	-0.29*
Helicobacter	74/67	64/65	149/225	211 / 164	65 / 55
	+0.05	-0.01	-0.20*	+0.13	+0.08
	-0.05	-0.03	-0.06	-0.01	+0.19*
Chlamvdia	323 / 306	497 / 393	1003 / 1041	1105 / 906	470 / 303
	+0.03	+0.12*	-0.02	+0.10*	+0.22*
	+0.01	+0.04	+0.02	-0.00	+0.13*
Bacillus	1843 / 1856	1798 / 1819	3095 / 2634	2812/2804	1211 / 848
	-0.00	-0.01	+0.08*	+0.00	+0.18*
	-0.02	-0.02	+0.07*	-0.02	+0.16*
Streptococcus	69 / 52	77 / 71	130 / 90	123 / 121	46 / 44
0	+0.14	+0.04	+0.18*	+0.01	+0.02
	+0.13	+0.00	+0.15	-0.02	+0.09
Staphylococcus	91 / 82	82/76	153 / 129	128 / 106	33 / 25
2.00000000	+0.05	+0.04	+0.09	+0.09	+0.14
	-0.01	+0.02	+0.09	+0.03	+0.17
Average D	+0.101	+0.085	+0.072	+0.063	+0.052
S.E. of D	0.04	0.02	0.04	0.01	0.05

Supplementary Table 1 (continued)

	Substitutions to and from an amino acid				
laxon	Gln	Trp	Leu	Tyr	Asp
Hominidae	359 / 291	61 / 25	394 / 397	96 / 114	197 / 308
	+0.11*	+0.42*	-0.00	-0.09	-0.22*
	+0.09	+0.44*	+0.05	-0.05	-0.18*
Muridae	6910 / 8265	732 / 589	10479/11447	2538 / 2750	8799 / 8107
	-0.09*	+0.11*	-0.04*	-0.04*	+0.04*
	-0.09*	+0.20*	+0.05*	+0.05*	+0.02*
Saccharomyces	1803 / 2568	62 / 99	3375 / 3706	1097 / 1081	4141 / 4875
	-0.18*	-0.23*	-0.05*	+0.01	-0.08*
	-0.14*	-0.04	+0.03*	+0.07*	-0.08*
Pyrococcus	450 / 294	38 / 59	1810 / 2141	383 / 502	1650 / 1170
-	+0.21*	-0.22	-0.08*	-0.13*	+0.17*
	+0.11*	-0.06	-0.03	-0.05	+0.13*
Escherichia	311 / 367	19/34	436 / 394	126 / 80	391 / 493
	-0.08	-0.28	+0.05	+0.22	-0.12*
	-0.09	-0.26	+0.07	+0.25*	-0.12*
Salmonella	108 / 146	14 / 16	211 / 230	77 / 48	173 / 264
	-0.15	-0.07	-0.04	+0.23	-0.21*
	-0.16*	+0.05	+0.03	+0.25*	-0.20*
Buchnera	285 / 161	5/13	392 / 474	109 / 137	287 / 224
	+0.28*	-0.44	-0.10*	-0.11	+0.12*
	+0.15*	-0.27	+0.01	+0.07	+0.11*
Vibrio	28/29	1/1	50 / 45	9/15	54 / 54
	-0.02	+0.00	+0.05	-0.25	+0.00
	-0.18	+0.33	+0.14	-0.20	+0.02
Pseudomonas	4083 / 3428	216/314	4237 / 7591	1212 / 1302	3835 / 3696
	+0.09*	-0.19*	-0.28*	-0.04	+0.02
	-0.04*	-0.02	-0.13*	-0.01	+0.02
Bordetella	102 / 76	8 / 13	194 / 113	55 / 32	160 / 189
	+0.15	-0.24	+0.26*	+0.26	-0.08
	+0.15	-0.24	+0.27*	+0.26	-0.08
Helicobacter	39 / 30	6/1	73 / 54	11/32	48 / 48
	+0.13	+0.71	+0.15	-0.49*	+0.00
	-0.06	+0.60	+0.11	-0.22	+0.07
Chlamydia	296 / 246	13/13	398 / 569	111 / 144	361 / 372
,	+0.09	+0.00	-0.18*	-0.13	-0.02
	-0.10*	+0.20	-0.04	+0.06	+0.03
Bacillus	1025 / 1153	40 / 53	1509 / 1576	485 / 503	1484 / 1621
	-0.06*	-0.14	-0.02	-0.02	-0.04
	-0.07*	-0.02	+0.02	+0.04	-0.05*
Streptococcus	38 / 25	1/2	51 / 44	13/16	72/91
	+0.21	-0.33	+0.07	-0.10	-0.12
	+0.00	-0.33	+0.10	+0.11	-0.12
Staphylococcus	32/41	2/0	68 / 68	38/35	84 / 103
210,010,0000000	-0.12	+1.00	+0.00	+0.04	-0.10
	-0.19	+1.00	+0.06	+0.11	-0.08
Average D	+0.037	+0.007	-0.014	-0.042	-0.042
S.E. of D	0.04	0.11	0.03	0.05	0.03

Supplementary Table 1 (continued)

	Substitutions to and from an amino acid				
laxon	Lys	Gly	Glu	Ala	Pro
Hominidae	336 / 292	294 / 342	232 / 386	517 / 606	204 / 437
	+0.07	-0.08	-0.25*	-0.08*	-0.36*
	+0.08	-0.02	-0.19*	-0.07	-0.30*
Muridae	6829 /10089	8238/8677	8056 /11269	1559 / 1733	7350 / 9883
	-0.19*	-0.03*	-0.17*	-0.05*	-0.15*
	-0.11*	+0.05*	-0.19*	-0.03*	-0.07*
Saccharomyces	4398 / 5742	3370/2511	4006 / 4554	5336 / 4950	2188 / 2290
	-0.13*	+0.15*	-0.06*	+0.04*	-0.02
	-0.10*	+0.17*	-0.19*	-0.00	+0.01
Pyrococcus	2731 / 3768	727 / 757	1663 / 2836	1241 / 1598	211/416
-	-0.16*	-0.02	-0.26*	-0.13*	-0.33*
	-0.14*	+0.13*	-0.17*	-0.05*	-0.19*
Escherichia	286 / 257	239 / 334	360 / 476	531 / 1129	138 / 294
	+0.05	-0.17*	-0.14*	-0.36*	-0.36*
	+0.06	-0.15*	-0.13*	-0.35*	-0.34*
Salmonella	103 / 118	126 / 205	176 / 202	285 / 519	53 / 167
	-0.07	-0.24*	-0.07	-0.29*	-0.52*
	-0.01	-0.08	-0.04	-0.21*	-0.36*
Buchnera	437 / 816	99 / 149	327 / 263	403 / 396	65 / 124
	-0.30*	-0.20*	+0.11*	+0.01	-0.31*
	-0.22*	+0.07	+0.03	-0.02	-0.06
Vibrio	37 / 40	23/24	45 / 70	45/93	10/21
	-0.04	-0.02	-0.22	-0.35*	-0.36
	+0.03	+0.19	-0.17	-0.19*	-0.10
Pseudomonas	2994 / 2423	2759/3186	3780 / 5448	6623 / 9261	1054 / 2287
	+0.11*	-0.07*	-0.18*	-0.17*	-0.37*
	-0.00	+0.08*	-0.12*	-0.11*	-0.17*
Bordetella	67 / 57	157 / 247	102 / 125	248 / 575	83 / 188
	+0.08	-0.22*	-0.10	-0.40*	-0.39*
	+0.09	-0.22*	-0.09	-0.40*	-0.38*
Helicobacter	71 / 95	45 / 42	44 / 67	93/119	14 / 27
	-0.15	+0.03	-0.21	-0.12	-0.32
	-0.14	+0.29*	-0.15	-0.00	-0.05
Chlamydia	305 / 609	174 / 198	307 / 512	697 / 790	116 / 224
	-0.33*	-0.07	-0.25*	-0.06	-0.32*
	-0.14*	+0.15*	-0.16*	-0.02	-0.05
Bacillus	1874 / 2047	898 / 932	1702 / 2258	1911/2117	342 / 619
	-0.04*	-0.02	-0.14*	-0.05*	-0.29*
	-0.03	+0.06*	-0.13*	-0.05*	-0.22*
Streptococcus	65 / 64	28 / 50	61 / 101	71 / 128	13 / 47
	+0.01	-0.28	-0.25*	-0.29*	-0.57*
	+0.02	-0.01	-0.17	-0.19*	-0.35*
Staphylococcus	86 / 90	33 / 53	81 / 93	76 / 103	6 / 47
, ,	-0.02	-0.23	-0.07	-0.15	-0.77*
	-0.01	-0.03	-0.07	-0.11	-0.39*
Average D	-0.075	-0.098	-0.150	-0.163	-0.362
S.E. of D	0.04	0.03	0.03	0.04	0.04

Supplementary Table 2. This table presents the pattern of long-term gain or loss of amino acids obtained by comparing extant proteins with their reconstructed remote ancestors. Two methods for deep ancestral reconstructions: PAML¹ and EMAPI², were applied to two sets of proteins. The first set, employed for reconstructing LUCA proteins, included 32 ribosomal proteins from bacteria (Bacillus halodurans C-125, Deinococcus radiodurans R1, Haemophilus influenzae Rd KW20, Helicobacter pylori 26695, Treponema pallidum subsp. pallidum str. Nichols), archaea (Archaeoglobus fulgidus DSM 4304, Aeropyrum pernix K1, Methanocaldococcus jannaschii DSM 2661, Sulfolobus solfataricus P2, Thermoplasma volcanium GSS1), and eukaryotes (Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Saccharomyces cerevisiae). The construction of the alignments of ribosomal proteins and removal of poorly aligned regions were described previously³. Altogether, 2836 sites were analyzed. The second set, which was used for the reconstruction of the ancestral eukaryotic sequences, consisted of 684 conserved proteins from 8 eukaryotic species (Homo sapiens, Drosophila melanogaster, Anopheles gambiae, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombae, and Plasmodium falciparum). The construction and filtering of these alignments was described previously⁴; 162719 sites were used for the reconstruction.

Obviously, the results of these reconstructions are not very reliable, since PAML and EMAPI produce substantially different values when applied to the same data set. This is hardly surprising because both methods use a time-reversible JTT substitution matrix⁵, which is based on the incorrect assumption of detailed equilibrium and uses present-day amino acid composition of proteins to compute substitution probabilities (PAML also assumes constant amino acid composition of proteins).

Cappion	nontary rabie 2		i annie aera gani a		
Amino	Average	Ribosomal	Ribosomal	Eukaryotic	Eukaryotic
Acid	long-term	proteins with	proteins with	proteins with	proteins with
	rate of	ancestors	ancestors	ancestors	ancestors
	gain/loss [†]	reconstructed by	reconstructed by	reconstructed by	reconstructed by
		PAML [‡]	EMAPI [‡]	PAML [‡]	EMAPI [‡]
Cys	+0.0055	+0.0034	+0.0066	+0.0058	+0.0061
Met	+0.0063	+0.0059	+0.0055	+0.0062	+0.0077
His	+0.0010	+0.0004	-0.0008	+0.0028	+0.0018
Ser	+0.0116	+0.0138	+0.0297	+0.0020	+0.0009
Phe	+0.0052	+0.0048	+0.0103	+0.0033	+0.0026
Asn	-0.0052	+0.0037	-0.0002	-0.0041	-0.0201
Thr	+0.0069	+0.0031	+0.0116	+0.0043	+0.0088
lle	-0.0092	+0.0026	-0.0073	+0.0010	-0.0329
Val	-0.0070	-0.0043	-0.0392	+0.0026	+0.0128
Arg	-0.0059	-0.0041	-0.0286	+0.0018	+0.0074
Gln	+0.0103	+0.0057	+0.0193	+0.0037	+0.0123
Trp	+0.0022	+0.0014	+0.0047	+0.0007	+0.0021
Leu	+0.0036	-0.0042	+0.0216	-0.0048	+0.0018
Tyr	+0.0025	+0.0023	+0.0115	-0.0002	-0.0037
Asp	+0.0025	+0.0026	+0.0103	-0.0011	-0.0018
Lys	-0.0212	-0.0089	-0.0341	-0.0141	-0.0277
Gly	-0.0016	-0.0087	-0.0075	+0.0017	+0.0082
Glu	-0.0096	-0.0162	-0.0035	-0.0123	-0.0065
Ala	+0.0044	+0.0053	-0.0092	+0.0049	+0.0168
Pro	-0.0022	-0.0087	+0.0005	-0.0042	+0.0037

Supplementary Table 2 Long-term rates of amino acid gain and loss

[†]The average number of gained (lost) residues per one amino acid substitution per site in the course of long-term evolution estimated for the two sets of proteins using PAML or EMAPI. [‡]The number of gained (lost) residues of an amino acid per one amino acid substitution per site.

- 1. Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. *CABIOS* **13**, 555-556 (1997).
- Brooks, D. J., Fresco, J. R. & Singh, M. A novel method for estimating ancestral amino acid composition and its application to proteins of the Last Universal Ancestor. *Bioinformatics* 20, 2251 - 2257 (2004).

- Wolf, Y. I., Rogozin, I. B., Grishin, N. V., Tatusov, R. L. & Koonin, E. V. Genome trees constructed using five different approaches suggest new major bacterial clades. *BMC Evol. Biol.*, 1, Research 8 (2001).
- Rogozin, I. B., Wolf, Y. I., Sorokin, A. V., Mirkin, B. G. & Koonin, E. V. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. *Curr. Biol.* 13, 1512-1517 (2003).
- 5. Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. *Comput. Appl. Biosci.* **8**, 275-282 (1992).

Supplementary Table 3. This table compares the pattern in amino acid gain and loss in recent evolution with the evidence on the order in which amino acids have been recruited into the genetic code. The rank of an amino acid suggested by the rate of its recent gain or loss (Fig. 1 in the main text) is in a good agreement with the consensus order of recruitment of amino acids into the genetic code, defined as a weighted average of the orders suggested by 60 empirical and theoretical criteria¹. For five strong gainers and four strong losers, Spearman's correlation coefficient $r_s = 0.07$ (P = 0.024). Among the most credible empirical criteria are the results of experiments imitating conditions of prebiotic organic synthesis with electric discharge (spark) in a reducing atmosphere, pioneered by Miller^{2,3}. Another important source of information on probable abiogenic amino acids are carbonaceous chondrites, a distinct class of meteorites containing a broad repertoire of organic compounds. Although caution is due in the interpretation of meteorite data because of the likelihood of terrestrial contamination^{4,5}, the amino acids in the Murchison meteorite are widely believed to be extra-terrestrial and abiogenic given the presence of several amino acids that do not occur in life forms on earth, the near equal amounts of enantiomers, and the unusual isotope ratios⁶⁻⁸. The data on amino acid synthesis in spark experiments and the amino acid content of the Murchison meteorite were compared separately with the ranks of amino acids suggested by the rates of their recent gain or loss. Amino acids with lowest rank (four strong losers) tend to be abundant in spark experiments, whereas five strong gainers (except Ser) are absent (P = 0.04, Fisher's exact test). Even a stronger pattern is observed for Murchison meteorite (P = 0.008).

Amino acid [®]	Rank, according to	Consensus order	Abundance in	Abundance in
	the rate of recent	of recruitment into	spark	Murchison
	gain or loss	the genetic code	experiments [#]	meteorite [#]
Pro	1	5	+	++
Ala	2	2	+++	++
Glu	3	7	+	++
Gly	4	1	+++	+++
Lys	5	15	-	-
Asp	6	3	+	+
Tyr	7	18	-	-
Leu	8	8	+	+
Trp	9	20	-	-
Gln	10	11	-	-
Arg	11	10	-	-
Val	12	4	+	++
lle	13	12	+	+
Thr	14	9	+	-
Asn	15	13	-	-
Phe	16	17	-	-
Ser	17	6	+	-
His	18	14	-	-
Met	19	19	-	-
Cys	20	16	-	-

Supplementary Table 3 Recruitment of amino acids into the genetic code

[®]Amino acids are listed in the order of the increasing values of D (the opposite order is used in Fig. 1), i. e. in the order in which they were recruited into the genetic code, as suggested by the pattern in their ongoing gain and loss.

[#]+++: present in abundance, ++: present in moderate abundance, +: present, -: absent.

1. Trifonov, E. N. The triplet code from first principles. J. Biomol. Struct. & Dyn. 22, 1-11 (2004).

2. Miller, S. L. A production of amino acids under possible primitive Earth conditions. *Science* **117**, 528-529 (1953).

3. Miller, S. L. Which organic compounds could have occurred on the prebiotic earth? *Cold Spring Harbor Symp. Quant. Biol.* **52**, 17–27 (1987).

- 4. Kvenvolden, K. A. Criteria for distinguishing biogenic and abiogenic amino acids--preliminary considerations. *Space Life Sci.* **4**, 60-68 (1973).
- 5. Glavin, D. P., Bada, J. L., Brinton, K. L. & McDonald, G. D. Amino acids in the Martian meteorite Nakhla. *Proc Natl Acad Sci USA* **96**, 8835-8838 (1999).

- Kvenvolden, K., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C., Kaplan, I. R. & Moore, C. Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. *Nature* 228, 923-926 (1970).
- 7. Cronin, J. R. & Pizzarello, S. Amino acids in meteorites. Adv. Space Res. 3, 5-18 (1983).
- 8. Epstein, S., Krishnamurthy, R. V., Cronin, J. R., Pizzarello, S. & Yuen, G. U. Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite. *Nature* **326**, 477-479 (1987).

Supplementary Methods. Correction for possible multiple substitutions at an amino acid site was introduced as follows. All the 15 pairs of sister genomes used in the present analysis are very close (Table 1). Thus, we assume that, at a site, no more than one substitution occurred after the divergence of sister species from their last common ancestor (CA). However, some outgroup species are distant from the sisters (Table 1). At a site, substitutions on the path connecting CA with the outgroup can either make identification of the CA amino acid impossible, or can lead to its misidentification. We used the following procedure to correct for the impact of such substitutions. Below, two subscripts denote amino acids present, at a given site, in the two sister species, the superscript denotes the amino acid in their CA, and the amino acid in the outgroup is shown in parentheses.

Let N_{ij}^{i} be the true number of sites with amino acids *i* and *j* in the two sister species and amino acid *i* in their CA. This number represents the total flux of i > j substitutions. An estimate of N_{ij}^{i} has to be constructed on the basis of the amino acid observed in the outgroup:

$$N^{i}_{ij} = N^{i}_{ij}(i) + N^{i}_{ij}(j) + N^{i}_{ij}(x)$$

where $N_{ij}^{i}(i)$, $N_{ij}^{i}(j)$, and $N_{ij}^{i}(x)$ are numbers of sites where the outgroup carries *i* (CA state is identified correctly), *j* (CA state is misidentified), and some amino acid *x* different from both *i* and *j* (CA state remains unknown), respectively.

In order to estimate $N^{i}_{ij}(i)$, we note that

$$N^{i}_{ij}(i) = N_{ij}(i) - N^{j}_{ij}(i)$$

where $N_{ij}(i)$ is the number of all sites with amino acids *i* and *j* in the two sister species and amino acid *i* in the outgroup. This number is known, and $N_{ij}^{i}(i)$ can be inferred. The probability that the sister species have amino acids *i* and *j* and the outgroup has a third amino acid is $N_{ij}(x)/n$, where n is the total number of sites. Under the assumption of detailed equilibrium, CA states *i* and *j* are equally probable. The probability that the outgroup would have neither *i* nor *j* given either *i* or *j* in CA can be estimated as $(N_{ij}(x)/n_j + N_{ii}(x)/n_i)$, where n_i and n_j are the total numbers of sites occupied by amino acids *i* and j, respectively (these numbers are the same for all the species involved). The probability that the outgroup carries amino acid *i* given *j* in CA can be estimated as $N_{jj}(i)/n_j$. Therefore,

$$\mathbf{N}_{ij}^{j}(i) \approx \frac{N_{ij}(x) \frac{N_{jj}(i)}{n_{j}}}{\left(\frac{N_{jj}(x)}{n_{j}} + \frac{N_{ii}(x)}{n_{i}}\right)}$$

Analogously,

$$\mathbf{N}_{ij}^{i}(j) \approx \frac{N_{ij}(x) \frac{N_{ii}(j)}{n_{i}}}{\left(\frac{N_{jj}(x)}{n_{j}} + \frac{N_{ii}(x)}{n_{i}}\right)}$$

$$\mathbf{N}_{ij}^{i}(x) \approx \frac{N_{ij}(x) \frac{N_{ii}(x)}{n_{i}}}{\left(\frac{N_{jj}(x)}{n_{j}} + \frac{N_{ii}(x)}{n_{i}}\right)}.$$

Thus, the flux of *i*->*j* substitutions, N_{ij}^{i} , is estimated as the sum of the above three terms.

Obviously, this estimate is conservative for our purposes, *i. e.*, it tends to underestimate the asymmetry of fluxes of reciprocal amino acid substitutions. Indeed, the detailed equilibrium was assumed. If, however, *i* is a gainer and *j* is a loser, the outgroup amino acid will be different from *i* in the CA less often than from *j* in the CA, *i. e.* the substitutions which remove a gainer will be recorded with a higher probability than substitutions which remove a loser.

and