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The study of evolution at the molecular level has focused primarily on changes
in gene (protein) sequences over time [1]. Of course, phenotype is influenced
not only by the sequence of genes but also by their expression patterns, i.e. the
amplitude, timing, and spatial distribution of transcription. Thus, changes in
gene expression are likely to be equally as important as sequence changes in
evolution; indeed, the significance of gene expression divergence to the evo-
lutionary process has been recognized for some time [2–4]. However, gene
expression data have only recently accumulated to the levels needed for sys-
tematic evolutionary studies. This has been due to the application of new high
throughput techniques that measure gene expression levels for thousands of
genes simultaneously [5–7], as well as the development of database resources
needed to handle such data [8–10]. The availability of these expression data,
together with the long standing interest in the evolutionary significance of
gene expression, has stimulated numerous recent studies on gene expression
divergence.

This chapter will provide a guide for the study gene expression diver-
gence. The emphasis will be placed on an integrated approach to the study
of evolutionary genomics that considers both gene sequence and gene ex-
pression divergence and explores the relationship between those two aspects
of the evolutionary process. The body of the chapter will be broken down
into three sections. The first two body sections, on sequence divergence and
on gene expression divergence, will be tutorial in nature and cover specific
methodological techniques involved in the study of gene sequence and gene
expression divergence. In most cases, descriptions of methods will focus on
the most straightforward and widely available techniques. The third body
section, on integrated analysis, will be more conceptual in nature and deal
with select examples of how gene sequence and gene expression divergence
analyses have been used to address fundamental evolutionary questions.

10.1 Sequence Divergence

Methods of gene (protein) sequence analysis have been covered in great detail
elsewhere. Here, some of the basic techniques and issues related to sequence
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analysis will be covered. A key concept for sequence analysis is that of func-
tional, and/or selective, constraint. A functionally constrained gene is one
that encodes a protein that performs a critical function for the organism,
and a functionally constrained residue (site) is one that plays an important
role in the function of the molecule. Changes to the sequence of such genes,
or sites, are likely to be deleterious, i.e. they will reduce the fitness of the
organism, and therefore will be removed by natural selection. Thus, genes, or
specific sites within a gene, that are under greater selective constraint evolve
more slowly, while genes (sites) that are subject to relatively less constraint
evolve more rapidly. As such, comparisons of gene divergence levels can be
used to make inferences about the strength of functional constraint and the
relative action of natural selection.

The availability of complete genome sequences provides great utility for
the comparative analysis of gene divergence levels because it allows for the
controlled comparison of divergence levels for thousands genes. To compare
gene divergence levels between complete genome sequences one needs to:
(i) identify orthologous genes, (ii) align gene (protein) sequences, and (iii) cal-
culate substitution rates. Each of these tasks will be briefly covered below.

10.1.1 Ortholog Identification

Genes that share a common ancestor are said to be homologous, and homol-
ogous genes can be defined as orthologous or paralogous [11]. Orthologs are
genes that diverged due to a speciation event, while paralogs are genes that
diverged due to a gene duplication event. Considering two species, such as
human and mouse, orthologs can be thought of colloquially as the pair corre-
sponding genes, i.e. those that perform the same function, in each genome. If
both genomes are completely sequenced, then pairs of orthologous genes can
be identified using sequence similarity. This is the so-called ‘reciprocal best
hits’ approach [12, 13]. To implement this approach, each protein sequence
encoded by genome A is compared individually to the entire set of protein
sequences encoded by genome B using a sequence similarity comparison tool,
such as BLAST [14,15] or FASTA [16]. Protein sequences are typically used
because they are more sensitive for sequence similarity comparisons. Then,
for each protein from genome A, the protein with the highest similarity from
genome B is recorded as its best hit. The same process is repeated in the
opposite direction, with each protein from genome B compared individually
to all proteins from genome A and the best hits recorded. Orthologous pairs
are then identified as those pairs of proteins that are each others best hits in
the reciprocal sequence similarity searches.

This simple approach works quite well for closely related genomes. How-
ever, there some caveats to ortholog identification that one should be aware of.
Ortholog identification between distantly related genomes is less accurate due
to problems with sequence similarity comparisons as well as the phenomenon
of gene loss where the corresponding member of an orthologous pair is lost
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in one lineage. Furthermore, the reciprocal best hits approach defined above
identifies one-to-one orthologs. However, orthologous relationships may also
be one-to-many or many-to-many due to lineage-specific gene duplications
that occur subsequent to the speciation event under consideration. These
complex relationships can confound attempts to identify orthologs using only
reciprocal best hits. Ortholog databases, such as the Clusters of Orthologous
Groups database [17], use complex algorithms that post process reciprocal
best hits between multiple complete genomes and allow for the representation
of many-to-many orthologous relationships. A recently developed method for
pairwise genome comparison, the reciprocal smallest distance algorithm, has
been shown to identify many orthologs missed by reciprocal best hits [18]. In
some rare cases, lineage-specific gene duplication followed by differential loss
of alternate paralogous copies in the different genomes can result in erroneous
identification of orthologs [19]. One way to avoid this problem is to use an ad

hoc approach whereby the distribution of divergence levels between orthologs
is considered and the most divergent outliers are removed.

10.1.2 Sequence Alignment

Once orthologous gene (protein) pairs are identified they need to be aligned
before divergence levels can be calculated. The Clustal series is the most
widely used group of programs for sequence alignment [20]. Clustal uses a
heuristic approach for building multiple sequence alignments, but the initial
pairwise alignment step is based on dynamic programming algorithm that
guarantees an optimal solution. Given its ready availability and the reliability
of its pairwise alignment step, Clustal is a good choice for aligning pairs of
orthologs.

10.1.3 Sequence Distance Calculation

Gene (protein) divergence levels are calculated as sequence distances, which
measure the numbers of differences between sequences normalized by their
lengths. The simplest sequence distance measure is the p-distance. The p-
distance is simply the proportion of differences between any two gene se-
quences and it is defined as

p =
nd

n
, (10.1)

where nd is the number of differences between the sequence and n is the
number of sites being compared. Alignment sites that contain gaps are usually
ignored when calculating p-distances. The problem with the p-distance is that
it tends to undercount the number of changes that have occurred between
sequences. For example, multiple changes at a single site will only be counted
as one difference. Parallel substitutions that lead to the same residue will not
be counted at all. A number of different sequence distance measures have
been developed that attempt to account for multiple substitutions and give
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a more accurate measure of sequence divergence. Examples of a few of these
will be covered below for nucleotide and protein sequences.

Nucleotide Sequences

Estimates of nucleotide divergence levels that account for multiple substi-
tutions are based on mathematical models of the substitution process. The
simplest such model is the Jukes-Cantor model. In this case, it is assumed
that nucleotide frequencies are equal and that nucleotide substitutions are
all equally probable. The Jukes-Cantor nucleotide distance (d) [21] can be
calculated simply from the p-distance,

d = −3

4
ln[1 − (4/3)p] . (10.2)

Nucleotide substitution models become progressively more complicated by
separately parameterizing different aspects of the substitution process. For
instance, the Kimura two-parameter (K2P) method [22] accounts for the
fact that transitions, changes from purine-to-purine or from pyrimidine-
to-pyrimidine, occur at different rates than transversions, changes between
purines and pyrimidines. The K2P distance can be calculated as

d = −1

2
ln(1 − 2P −Q) − 1

4
ln(1 − 2Q) , (10.3)

where P and Q are the proportional differences between the sequences due
to transitions (P ) and transversions (Q). The Felsenstein (F81) model ex-
tends Jukes-Cantor by allowing for unequal nucleotide frequencies [23]. Both
of these methods are merged in the Hasegawa, Kishino, and Yano (HKY85)
model that allows for unequal base frequencies as well as different transition
and transversion rates [24]. The most nuanced nucleotide substitution model
is the General reversible model where nucleotide frequencies are unequal and
all six pairs of substitution rates are free to vary [25, 26]. More detailed ex-
positions of nucleotide substitutions models can be found in Refs. [27, 28].

Synonymous versus Non-Synonymous Substitutions

One of the great advantages of using nucleotide sequence distances is the
information that they can provide regarding the action of natural selection.
The effects of selection on nucleotide coding sequences (CDSs) can be gleaned
by comparing levels of synonymous (S) versus non-synonymous (N) sequence
divergence [29]. S changes are substitutions in the CDS that do not change the
encoded amino acid sequence, while N changes are CDS substitutions that
result in amino acid differences. Thus, N changes may change the structure
and/or function of the encoded protein, while S changes are largely silent.
Since natural selection exerts its influence based on detectable phenotypic
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differences,N changes are subject to the effects of selection while S differences
are, for the most part, invisible to natural selection. As such, S changes tend
to be freer to accumulate than N changes. The proportion of synonymous
(pS) and non-synonymous (pN ) differences can be calculated as the number
of S (Sd), or the number of N (Nd), differences normalized by the number
of S, or N , sites

pS =
Sd

S
(10.4a)

pN =
Nd

N
. (10.4b)

These measures also needed to account for multiple substitutions to be more
accurate. The pS and pN values can be used with the Jukes-Cantor model
(Eq. (10.1)) to calculate dS and dN respectively. This approach is employed
in the Nei-Gojobori method [30] for calculating dS and dN . Other methods
take into account factors such as transition versus transversion differences as
well as the nuances of the genetic code to try and achieve the most accurate S
and N distance measures possible. Several of these methods are implemented
in the program MEGA [31]. The program PAML [32] also calculates dS and
dN using a maximum likelihood based approach. Users should note that de-
pending on the method employed, dS may be referred to as Ks and dN may
be referred to as Ka.

In general, when sequence pairs are compared, dN/dS � 1 is indicative
of purifying selection, or removal of deleterious changes, dN/dS ≈ 1 suggest
the absence of natural selection, and dN/dS � 1 is indicate of adaptive, or
diversifying selection, based on the fixation of beneficial N sequence changes.

Protein Sequences

As with nucleotide sequences, protein sequence divergence levels can be cal-
culated using the proportion of differences (p-distance) between sequences,
but this measure will underestimate the true amount of divergence for all but
the most closely related sequences. One correction for multiple amino acid
substitutions is the Poisson corrected (PC) distance [27] where the proba-
bility of k amino acid substitutions at a given site is considered to follow a
Poisson distribution. PC can be calculated from the p-distance as

d = − ln(1 − p) . (10.5)

However, most models of the amino acid substitution process are empirical
rather than analytical. Empirical models take advantage of the availability of
many related protein sequences that can be reliably aligned. Given a set of
protein sequence alignments, the relative probabilities of exchange between
any two amino acid residues can be calculated. These probabilities can be
placed into a substitution matrix which can be employed in the calculation of
distances between protein sequences. Commonly employed empirical models
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are based on the PAM [33] and JTT [34] amino acid substitution matrices.
Distances based on empirical models are more accurate than those obtained
with simple analytical models like the PC distance, because they more closely
reflect biological reality.

Another important consideration when calculating divergence levels be-
tween protein sequences is the fact that changes may accumulate at vastly
different rates in different regions of the sequence. As described previously,
sites along a sequence that are more functionally constrained will change
more slowly than sites that are less constrained. The gamma distance cor-
rection is one way to account for this rate variation across sites. The gamma
correction is based on the observation that the substitution rate across sites
can be considered to vary according to a gamma distribution [35]. The shape
of this distribution is governed by a single parameter α. The gamma distance
(dG) can be calculated from the p-distance as

dG = α
[

(1 − p)−1/α − 1
]

. (10.6)

The lower the value of α, the more severe the correction for multiple sub-
stitutions is. A gamma distance correction can also be used together with
an empirical based model of amino acid substitution. For instance, the JTT
model can be used together with a gamma correction and this is represented
as JTT+Γ. Several protein divergence calculation methods are implemented
in the program MEGA.

10.2 Gene Expression Divergence

High-throughput techniques for measuring gene expression levels, such as
microarray and serial analysis of gene expression (SAGE) approaches, have
resulted in an explosion of gene expression data. This section will focus on
how microarray data collected from different species can be used to calculate
gene expression divergence. In order to illustrate the methods that can be
used in the evolutionary analysis of gene expression data, examples will be
taken from our own work based on the analysis of the Novartis Foundations’
mammalian gene expression atlas [36, 37]. The gene expression atlas reports
expression levels for thousands of human and mouse genes based on the use of
Affymetrix microarray experiments. There are two versions of the atlas and
this chapter focuses primarily on the second and more recent version, some-
times referred to as GNF2. In GNF2, the results of replicate experiments
across a wide variety of tissue and cell-line samples are reported. The human
data set has expression level measurements for 44,744 probes over 79 distinct
tissue samples, while the mouse data set includes expression level measure-
ments for 36,181 probes over 61 distinct tissue samples; in both data sets, each
tissue sample is represented by two replicate experiments. Given this abun-
dance of comparative expression data, GNF2 is a phenomenal resource for
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the analysis of gene expression divergence. Used together with human-mouse
comparative sequence analysis, investigation of the GNF2 data can reveal
much about the evolution of gene expression and the relationship between
gene sequence and gene expression divergence.

10.2.1 Database Sources

There are a number of database sources available for extracting gene expres-
sion data. The Novartis Foundation hosts its own database [38] that allows
for targeted querying of the gene expression atlas along with downloading
of entire expression datasets. The Novartis site also provides valuable infor-
mation concerning the expression atlas including useful tips for the analysis
and interpretation of their data as well as information on the source of tissue
samples used.

The UCSC genome browser [39] has integrated the gene expression at-
las data into its browser tracks for the human and mouse genomes. As with
everything on their site, the primary expression data is available for down-
load either as a SQL tables or as tabulator delimited text files. In addition,
one particularly nice feature provided by the UCSC genome browser is the
mapping of Affymetrix probes identifiers to Genbank accessions for known
human and mouse genes. The UCSC genome browser also provides a number
of other canonical gene expression datasets for other model organisms such
as yeast and Drosophila.

The Gene Expression Omnibus (GEO) database [40] at the National Cen-
ter for Biotechnology Information (NCBI) also provides the GNF2 data. This
data can be queried with search terms, and users can also download the pri-
mary expression data as tabulator delimited text files. GEO is a vast reposi-
tory of gene expression data and one of its strengths is the many ways that the
data can be queried. For instance, users can identify all datasets generated
from a specific microarray platform. This can be quite useful for extracting
datasets that can be readily compared. GEO also provides nice graphical
views of expression data results as well as targeted comparisons between user
selected samples from a given dataset.

There are a couple of other database resources of note that store and
disseminate microarray expression data including the Stanford Microarray
Database [41] and the Human Gene Expression Index [42].

10.2.2 Probe-to-Gene Mapping

One of the first challenges in using GNF2, or any results based on the
Affymetrix platform for that matter, is probe-to-gene mapping. Affymetrix
microarray technology is based on oligonucleotide probes that are designed
to correspond to specific genes, and each probe is labeled with a unique iden-
tifier (id). The primary expression data are generally distributed along with
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these Affymetrix ids. Since comparative, between species, analysis of gene ex-
pression data involves a gene-centric approach, the user is faced with the task
of mapping these probe ids to gene ids such as Genbank or Refseq accessions.
Fortunately, Affymetrix probe-to-gene mapping keys can be downloaded from
the Affymetrix web site [43]. Alternatively, the UCSC Genome Browser pro-
vides probe-to-gene mapping for GNF2. Finally, since the sequences of the
probes are often provided along with expression data, users could always do
their own probe-to-gene mapping but this would be somewhat labor intensive.

Users should be aware that sometimes multiple probes will map to a single
gene. In such cases, the user may decide to average the expression values for
the multiple probes to come up with one set of gene-specific values. Another,
somewhat arbitrary, approach that is sometimes used is to take the probe
that yields the highest expression value as the best one for a given gene. Far
more problematic is the fact that, in some cases, a single probe will map to
multiple unique genes; because of their inherent ambiguity, these data should
not be used for the analysis of gene expression divergence.

10.2.3 Structure of the Data

The GNF2 data, as well as many other microarray datasets, are structured as
a table with probe-specific expression data in rows and experiment (sample)-
specific data in the columns. Thus, for any particular probe, or gene, the
expression data consists of an array of values, one for each experimental
condition. These are gene expression profiles, and they can be thought of as
vectors in n-dimensional space, where n is the number of distinct samples
in the data set. For instance, for any gene i, with expression levels recorded
across n samples, its expression profile can be represented as

genei = [Xi1, Xi2, Xi3, . . . , Xin] , (10.7)

where Xij is the expression value for gene i in the experiment j. It is these
gene-specific expression profiles that can be compared within or between
species to measure gene expression divergence. When comparing profiles be-
tween species, it is essential that the identity j and number n of the samples
is identical in the vectors. For example, in GNF2 the human and mouse
datasets share 28 common tissue samples. These 28 samples can be arranged
in the same order across the gene expression profiles so that vectors can be
meaningfully compared between species.

10.2.4 Transformation and Normalization

Two critical issues with respect to microarray data are transformation and
normalization. The details on transformation and normalization are out-
side the scope of this chapter but they have been treated in depth else-
where [44–46]; here, these matters will be covered briefly. For microarray
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data, transformation generally involves taking the logarithm to the base 2
(log2) of the expression value. This procedure is typically used to transform
ratios as in the case where the expression data are represented as a ratio of
one experimental condition over a reference experimental condition. In this
case, log2 transformation treats up-regulation and down-regulation equally
and represents them in a very regular and intuitive way. For example, a ra-
tio of 1 would mean no change in expression across conditions and the log2

value would be 0. A ratio of 4 would yield a log2 value of 2, while a ratio of
1/4 gives a log2 value of −2. Thus, using log transformation, the magnitude
of the deviations in up and down-regulation are symmetrical around 0. The
GNF2 data, however, consist of absolute expression value measurements as
opposed to ratios. Nevertheless, the relative levels of gene expression for each
sample j across a gene i expression profile is often represented as a ratio
of the absolute expression value j over the median value of all n expression
values in the profile. The use of log2 transformation for these kinds of profile
median ratios has the same useful effect of mapping changes in gene-specific
relative expression in a symmetrical and continuous way around 0. The ba-
sic idea behind normalization is to control for systematic variation between
experimental conditions that affect the recorded levels of expression. This
is particularly important when comparing expression levels, or profiles, of
orthologous genes between species. Since the conditions under which the ex-
periments for different species were conducted are sure to differ, it is essential
that relative, as opposed to absolute, expression values are compared between
experiments. One straightforward way to do this is to mean, or median, cen-
ter the results for each microarray. This consists of dividing each individual
expression by the mean, or median, expression value for the entire array.

10.2.5 Measuring Divergence

Expression Level and Breadth

Gene expression divergence can be measured in several different ways. Per-
haps the most intuitive of these methods is to compare differences in gene
expression level or amplitude. When comparing between species, it is im-
portant to ensure that the same tissues or samples are being compared and
that the data between species has been appropriately normalized. Given a
gene-specific profile of expression levels across a set of different tissues or
samples, the expression level can be taken as the maximum or the average of
the tissue-specific expression values. While both of these measures fairly rep-
resent the amplitude of gene expression, using the average (or the sum) over
all tissue-specific values has the disadvantage of conflating gene expression
level with gene expression breadth. Gene expression breadth is a measure of
how widely a gene is expressed and can be counted simply as the number of
tissues in which a gene is expressed at or above some threshold. Obviously
if expression breadth is to be accurately compared between species, then it
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helps to ensure that the same set of tissues is being compared for each species.
For example, the GNF2 has a total of 28 tissues that are shared between the
human and mouse experiments. Expression breadth would simply be mea-
sured as the number of j tissue samples out of 28 where gene i is expressed
at or above some threshold. GNF2 provides absolute expression levels in ar-
bitrary units that are referred to as signal intensity values. For the GNF2
data, a signal intensity value ≥ 350 can be taken to (approximately) indicate
that a gene i is expressed in a tissue j. In addition to signal intensity values
(i.e. absolute expression levels), the Novartis site also provides presence ab-
sence calls for each gene i and condition j (Xij). These calls simply indicate
whether or not a gene i can be considered to be expressed in tissue j with a
certain level of statistical confidence. Thus, another approach to determine
expression breadth is simply to use the presence/absence calls for all Xij .

Gene Expression Profiles

As described earlier, a gene expression profile represents the levels of ex-
pression for gene i over all experiments (tissues) j. Most comparisons of gene
expression patterns consist of quantitative measures of the similarity or differ-
ence between gene expression profile vectors. Two of the most commonly used
metrics for comparing expression profile vectors are the Euclidean distance
and the Pearson correlation coefficient. The Euclidean distance is geometric
measure of the straight line distance of two points. The higher the Euclidean
distance, the more different the gene expression profiles are. For instance, if
comparing two genes A and B that have two-dimensional gene expression
profile vectors A = [a1, a2] and B = [b1, b2], the Euclidean distance dE would
be calculated as

dE =
√

(a1 − b1)2 + (a2 − b2)2 . (10.8)

For an expression profile vector of n-dimensions, the Euclidean distance dE

would be calculated as

dE =

√

√

√

√

n
∑

j=1

(aj − bj)2 . (10.9)

The Euclidean distance is particularly sensitive to changes in the magnitude
of gene expression. Comparison of genes with identical relative expression
levels across n tissues may actually yield quite large Euclidean distances if
their absolute expression levels differ substantially. One way to get around
this is to use relative expression levels by mean, or median, centering the
expression levels for each gene-specific vector.

The Pearson correlation coefficient is also widely used in comparing gene
expression profile vectors, and it measures the strength of the linear rela-
tionship between the vectors being compared. Pearson correlation coefficient
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values scale from −1 to +1, where −1 would correspond to the exact oppo-
site expression pattern and +1 would indicate an identical expression pattern.
Use of the Pearson correlation coefficient assumes that the data are normally
distributed so log transformation of expression data is advised when compar-
ing profiles with this method. It is also important to note that the Pearson
correlation coefficient works best when comparing genes that are differen-
tially expressed, i.e. when there are substantial differences in expression levels
across the n samples being considered. Genes that are ubiquitously expressed,
such as housekeeping genes, can obviously be considered to have very simi-
lar expression patterns. However, because there may be no discernable linear
relationship between up and down expression across tissues for such evenly
expressed genes, comparison of these genes using the Pearson correlation co-
efficient will often result in values around 0 indicating no correlation. On the
other hand, the Pearson correlation coefficient is very good at identifying
genes with similar tissue-specific expression patterns. There are many forms
for the Pearson correlation coefficient r. Given two n-dimensional gene ex-
pression profiles vectors for genes A and B, where A = [a1, a2, . . . , an] and
B = [b1, b2, . . . , bn], r can be calculated as

r =

n
∑

j=1

aj bj −
1

n

n
∑

j=1

aj

n
∑

j=1

bj

√

√

√

√

√

n
∑

j=1

a2
j −

1

n





n
∑

j=1

aj





2
√

√

√

√

√

n
∑

j=1

b2j −
1

n





n
∑

j=1

bj





2
. (10.10)

Two other useful distance measures that are often employed include the Ham-
ming distance and mutual information both of which are useful for consider-
ing expression data that has been rendered discrete such as presence/absence
calls that can be represented as binary expression profiles.

10.2.6 Clustering and Visualization

Clustering and visualization are important components of gene expression
divergence analysis, which will nevertheless be treated in only the most cur-
sory manner here. For more detailed treatment of these issues, users can
consult [44,47–49]. The idea behind clustering is simply to group genes with
similar expression profiles together. Clustering approaches can be classified as
hierarchical or non-hierarchical. Hierarchical methods group profiles into clus-
ters and also specify the relationships among the profiles within clusters, while
non-hierarchical methods simply define clusters of related expression profiles
with no specification of the within group relationships. Hierarchical cluster-
ing methods can be agglomerative, where profiles are successively joined until
they are all connected, or divisive, where the entire set of profiles is consid-
ered as a single cluster that is progressively broken down. Non-hierarchical
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clustering, on the other hand, starts with a pre-defined number of groups and
then proceeds to partition the profiles into these discrete groups. Examples of
non-hierarchical clustering are K-means clustering and self organizing maps.

Visualization provides a very intuitive way for the user to identify similarly
expressed genes. In visualization, each sample j in a gene profile i is assigned a
color that indicates its relative level of expression. A typical color scheme that
is employed in visualization is to label relatively high expression levels (or up-
regulated) as red and relatively low expression levels (or down-regulated) as
green. This allows for ready identification of genes that have similar patters
of up and down expression across their respective profiles. Visualization is
often combined with clustering techniques to define related sets of genes.
There are many software packages that combine clustering and visualization
techniques. One freely available program that we have found to be quite useful
is the TIGR Multiexperiment Viewer (MEV) [50].

10.3 Integrated Analysis

This section will treat a few select examples from the literature that illustrate
how integrated gene sequence and gene expression divergence analyses can be
used to address fundamental evolutionary questions. This survey highlights
new findings regarding the evolution of gene expression as well as some of the
open questions that have been raised in this relatively new area of inquiry.

10.3.1 Sequence versus Expression Divergence

We have explored the intersection of gene expression and gene sequence di-
vergence in two recent publications of our own [51,52]. Both of these papers
dealt with mammalian evolution and combined genomic sequence analysis
with analysis of gene expression data from the Novartis gene expression at-
las. The first of these studies took a network-based approach to the study of
gene co-expression [52]. Human gene expression profiles were compared and
genes that were found to be co-expressed were linked in a network. The topol-
ogy of the resulting human gene co-expression network was shown to have
scale-free properties that imply evolutionary self-organization via preferen-
tial node attachment. When rates of sequence evolution between human and
mouse orthologs were overlayed on the co-expression network, genes with nu-
merous co-expressed partners, so-called ’hubs’ of the network, were found to
evolve more slowly, on average, than genes with fewer co-expressed partners.
Furthermore, co-expressed genes were demonstrated to have co-evolved in the
sense that they have similar rates of evolution. These observations indicate
that the strength of selective constraints on gene sequences is strongly influ-
enced by the topology of the gene co-expression network. This connection is
strong for the coding regions and 3′ untranslated regions (UTRs), but the 5′

UTRs appear to evolve under a different regime. An interesting exception to
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this trend was found for the relationship between gene sequence divergence
and gene expression profile divergence. We found no correlation between the
rate of gene sequence divergence and the extent of gene expression profile
divergence between human and mouse. This suggests that distinct modes of
natural selection might govern sequence versus expression divergence. Our
current work is focused on the possibility that the evolution of gene expres-
sion may be driven by adaptation-driven divergence characterized convergent
evolution of gene expression patterns.

In a related study, two different aspects of gene expression divergence were
related to gene sequence divergence [51]. Changes in the expression level, or
the amplitude of expression, between human-mouse orthologs were shown to
be correlated with levels of gene sequence divergence that are determined
largely by purifying selection. However, consistent with the previously de-
scribed work, evolutionary changes of tissue-specific gene expression profiles
did not show such a correlation with sequence divergence. This is despite
the fact that divergence of both gene expression levels and profiles were sig-
nificantly lower for orthologous human-mouse gene pairs than for pairs of
randomly chosen human and mouse genes. Together, these findings indicate
that while purifying selection is acting to constrain gene expression diver-
gence, there is also likely to be a neutral component in evolution of gene
expression. This may be particularly true for tissues where the expression
of a given gene is low and functionally irrelevant. Neutral evolution of gene
expression is explored in more detail in the following section. One prediction
of the neutral model of gene expression divergence is a regular, clock-like
accumulation of gene expression changes. Relative rate tests of the gene ex-
pression divergence among human-mouse-rat orthologous gene sets did reveal
clock-like evolution for gene sequence divergence, and to a lesser extent for
gene expression level divergence, but not for the divergence of tissue-specific
gene expression profiles. These results suggest that the evolution of tissue-
specific expression profiles may be influenced by adaptively driven changes
that tend to accumulate at an uneven tempo over time.

10.3.2 Neutral Changes in Gene Expression

Neutral evolutionary changes are those that do not confer any selective ad-
vantage or disadvantage. The neutral theory of molecular evolution holds that
most changes between gene sequences are neutral, with respect to organismic
fitness, and accumulate due to the random fixation of variants. The relative
influence of adaptively driven changes versus neutral evolution of gene se-
quences was an historically contentious issue that led to many fruitful areas
of inquiry. It appears that a similar debate in the literature is emerging over
the relative contributions of these two evolutionary modes – selection driven
versus neutral – to the evolution of gene expression.

Only very recently, due to the systematic analysis of high-throughput
gene expression data sets, has the neutral frame of reference started to be



D
R

A
FT

236 Jordan and Mariño-Ramı́rez

applied in earnest to the evolution of gene expression patterns. In one partic-
ularly provocative study, Khaitovich et al. evaluated the divergence of gene
expression patterns within and between several mammalian species and con-
cluded that the evolution of gene expression patterns is largely neutral [53].
They based their conclusion on several observations. First of all, expression
levels between species were found to accumulate approximately linearly as a
function of time; this pattern held for comparisons of both primate species
and of mouse species. Secondly, divergence of expression levels between hu-
man and chimp were found to be the same for pseudogenes, which evolve
under no selective constraint, as for (intact) non-pseudogenes. Finally, ex-
pression level differences within species were shown to be strongly correlated
with expression level differences between species, suggesting that the same
neutral evolutionary process are involved in the evolution of gene expression
both within and between species. The conclusion that gene expression di-
vergence is primarily neutral has substantial implications for the study of
biological evolution and function. For instance, the clock-like accumulation
of gene expression changes may allow for detailed inferences on the evolution
of different tissues and organ systems based on changes in gene expression
patterns among them. On the other hand, if gene expression changes are neu-
tral then the application of expression data to functional inferences may be
limited.

Another recent study, by Yanai et al., also concluded that gene expres-
sion divergence between species may be dominated by neutral evolution [54].
This work took advantage of the first mammalian gene expression atlas pro-
vided by Novartis to assess the rate of gene expression pattern divergence
between mammalian species. Orthologous pairs of human-mouse genes were
identified and their expression patterns across multiple tissues were quanti-
fied. Expression patterns were represented as profiles that reflect the relative
expression levels in different tissues, and both distance measures and corre-
lations between profiles were measured. Several surprising results came out
of this analysis. None of the gene expression profiles that were most similar
between human and mouse corresponded to orthologous genes. In fact, ex-
pression profiles between orthologous genes were found to diverge so rapidly
that their differences are comparable to those seen between duplicated genes
(paralogs) and between random gene pairs. Even the corresponding tissues
between the two species did not show similar patterns of gene-specific ex-
pression levels; all human tissues were more similar to one another as were
all mouse tissues. Such rapid divergence in gene expression can be attributed
to the effects of natural selection based on adaptively beneficial functional
differences, so-called positive selection, or to random drift based on function-
ally indistinguishable (i.e. neutral) differences. The authors favor the neutral
model for several reasons including the presence of orthologous gene pairs
that are not presumed to have changed function and the even distribution of
expression differences across tissues.
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Contrary to the results suggesting neutral evolution of gene expression, a
few other recent studies have pointed to an important role for natural selec-
tion in constraining, and perhaps driving, gene expression divergence. Fraser
et al. focused on random fluctuations in gene expression that produce noise in
protein levels [55]. They investigated the biological significance of this noise,
specifically asking whether fluctuations in gene expression are biologically
relevant and thus subject to natural selection. To investigate this issue, they
tested two specific hypotheses, namely that two classes of genes, (i) essential
genes and (ii) genes that encode members of multi-subunit protein complexes,
should both be particularly sensitive to random fluctuations (noise) in gene
expression levels. Combined computational analyses of yeast gene and pro-
tein expression levels, gene knock-out effects, and protein-protein interaction
data were used towards this end. The rationale behind the test was that es-
sential genes and genes that encode members of protein complexes should be
particularly subject to the effects of natural selection – indeed these classes
of genes tend to show reduced rates of evolution consistent with strong puri-
fying selection – and if fluctuations in expression levels are significant, these
too should be under strong selection for the gene classes in question. They
found that, for both tests and over a large range of protein production levels,
these two classes of genes show significantly and substantially lower levels of
noise in protein expression than other genes. From this, it was concluded that
noise in gene expression is biologically relevant and is subject to the effects
of natural selection. This conclusion seemingly stands in stark contrast to
those of the two studies summarized above, both of which conclude that gene
expression levels are neutral with respect to organismic fitness. However, the
results summarized here may not be inconsistent with a neutral model of gene
expression. Indeed, natural selection does have an important role under the
neutral model of evolution, but its effect is to reduce, rather than enhance,
levels of diversity. Thus, genes (or positions in gene sequences) that are more
functionally constrained are expected to evolve more slowly than those that
are less functionally constrained and this prediction has been born out time
and time again. The noise in protein expression, while biologically relevant
in the sense that it is deleterious, conforms to the neutral pattern with genes
that are presumably more functionally constrained showing less variation in
protein production.

Yet another recent study examined patterns of gene expression poly-
morphism (within species changes) and gene expression divergence (between
species changes) in a number of datasets from different eukaryotic species
including Drosophila, mice, and primates [56]. Here again, the evolution of
gene expression was considered with respect to the neutral model of change.
Using a number of different measures, the authors found that gene expres-
sion levels tend be evolutionarily stable in that they change very little over
time. This stability strongly implies that gene expression levels are subject
to selective constraint. However, there are substantial differences in the rates
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at which gene expression changes, and different functional classes of genes
were shown to have distinct characteristic levels of change. The authors also
put forward a model that explains how changes in gene expression could be
driven by directional selection.

10.3.3 Evolutionary Conservation of Gene Expression

The accumulation of genome scale expression data sets is beginning to pro-
vide opportunities for cross-species comparisons of gene expression patterns.
One recent report provides an example of how such studies can reveal pat-
terns of evolutionary conservation of gene expression [57]. The authors of
this work compiled large-scale gene expression data sets from six diverse
species: Escherichia coli, Saccharomyces cerevisiae, Arabidposis thaliana,
Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens. Their
analysis included expression data for more than 40,000 genes under 2,000
experimental conditions, and the study is also notable for its combination of
gene expression and sequence data analysis. Correlations between condition-
specific gene expression patterns were used to identify co-expressed genes
within species. Co-expression networks, where genes are the nodes and they
are connected if significantly co-expressed, were found to have similar connec-
tivity across species. The distributions of network connectivity were found to
follow a power-law similar to other biological networks such as protein-protein
interaction and metabolic networks. The scale-free nature of these distribu-
tions, along with their conservation between species, suggests that a funda-
mental mechanism is involved in the evolution of gene expression in different
domains of life. Pairwise correlations between genes were also compared to
the correlations between homologous gene pairs in different species and a
significant fraction was found to be similar. The utility of this homologous
co-expression similarity with respect to functional annotation of genes was
demonstrated. In addition, sets of highly connected genes were enriched for
genes that are essential and posses a high number of homologous sequences in
other organisms. Expression data were broken down into modules that consist
of co-expressed genes and the particular expression conditions that give rise
to their co-regulation. While some groups of functionally related genes show
up as conserved modules in multiple species, many of the expression mod-
ules vary widely across species and so probably contribute to evolutionary
diversification.

Stuart et al. conducted a similar study of the cross-species conservation
of gene expression and identified pairs of genes that are co-expressed across
more than 3,000 microarray experiments conducted for humans, flies, worms,
and yeast [58]. A total of 22,163 evolutionarily conserved co-expression rela-
tionships were identified in this way. Links between co-expressed genes were
used to build a co-expression network and this approach revealed network
components that were specific for different levels of diversification, such as
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ancient versus more recently evolved connections. The conservation of expres-
sion patterns suggests that co-expression gene pairs are functionally related
and the functional similarity provides the mechanistic basis of the selection
for maintained co-expression. In light of this finding, the authors demonstrate
how the co-expression relationships can be used to provide evidence for the
involvement of new genes in specific cellular functions including cell cycle, se-
cretion, and protein expression. Notably, a few specific predictions generated
based on conserved co-expression were tested and confirmed.
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