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ABSTRACT

Motivation: New sequencing technologies have accelerated
research on prokaryotic genomes and have made genome
sequencing operations outside major genome sequencing centers
routine. However, no off-the-shelf solution exists for the combined
assembly, gene prediction, genome annotation and data presentation
necessary to interpret sequencing data. The resulting requirement
to invest significant resources into custom informatics support for
genome sequencing projects remains a major impediment to the
accessibility of high-throughput sequence data.
Results: We present a self-contained, automated high-throughput
open source genome sequencing and computational genomics
pipeline suitable for prokaryotic sequencing projects. The pipeline
has been used at the Georgia Institute of Technology and the Centers
for Disease Control and Prevention for the analysis of Neisseria
meningitidis and Bordetella bronchiseptica genomes. The pipeline is
capable of enhanced or manually assisted reference-based assembly
using multiple assemblers and modes; gene predictor combining;
and functional annotation of genes and gene products. Because
every component of the pipeline is executed on a local machine
with no need to access resources over the Internet, the pipeline is
suitable for projects of a sensitive nature. Annotation of virulence-
related features makes the pipeline particularly useful for projects
working with pathogenic prokaryotes.
Availability and implementation: The pipeline is licensed under
the open-source GNU General Public License and available at the
Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The
pipeline is implemented with a combination of Perl, Bourne Shell and
MySQL and is compatible with Linux and other Unix systems.
Contact: king.jordan@biology.gatech.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on January 25, 2010; revised on May 21, 2010; accepted
on May 25, 2010

1 INTRODUCTION
Genome sequencing projects, pioneered in the 1990s (Fleischmann
et al., 1995), require large-scale computational support in
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order to make their data accessible for use and interpretation
by biologists. Large sequencing centers have traditionally
employed or collaborated with teams of software engineers and
computational biologists to develop the software and algorithms for
sequencing hardware interfaces, enterprise data storage, sequence
assembly and finishing, genome feature prediction and annotation,
database mining, comparative analysis and database user interface
development. While many of the components developed by these
teams are now available online under open-access terms, the
development of new, high-throughput sequencing technologies has
necessitated updates to these tools and development of even more
sophisticated algorithms to address the challenges raised by the
new data. These new technologies—454 pyrosequencing (Margulies
et al., 2005), ABI SOLiD (Shendure et al., 2005) and Illumina
(Bentley et al., 2008)—are now collectively referred to as second
generation sequencing technologies. Similar updates will be needed
as the third generation of sequencing technologies, such as Pacific
Biosciences’ SMRT sequencing (Eid et al., 2009), enter production
use. New and improved tools released for these technologies on a
monthly basis include assemblers, mapping algorithms, base calling
and error correction tools, and a multitude of other programs.
Because of this fast pace of development, few experts are able
to keep up with the state of the art in the field of computational
genomics. Accordingly, the rate limiting step in genome sequencing
projects is no longer the experimental characterization of the data
but rather the availability of experts and resources for computational
analysis.

At the same time, the increased affordability of these new
sequencing machines has spawned a new generation of users who
were previously unable to perform their own genome sequencing,
and thus collaborated with large sequencing centers for genome
sequencing and subsequent computational analysis. While these
users are now able to experimentally characterize genomes in house,
they often find themselves struggling to take full advantage of the
resulting data and to make it useful to the scientific community since
the informatics support for their genome projects is not sufficient.

Several large sequencing consortia (Aziz et al., 2008; Markowitz
et al., 2009; Seshadri et al., 2007) have produced comprehensive,
centralized web-based portals for the analysis of genomic and
metagenomic data. While extremely useful for many types of
projects and collaborations, these solutions inherently result in a
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loss of data processing flexibility compared to locally installed
resources and may be unsuitable for projects dealing with sensitive
data. Recently, another group (Stewart et al., 2009) has published
DIYA, a software package for gene prediction and annotation
in bacterial genomes with a modularized, open source microbial
genome processing pipeline. However, DIYA does not include
a genome assembly component, and does not provide for the
combination of complementary algorithms for genome analysis.

To address the outstanding challenges for local computational
genomics support, we have developed a state of the art,
self-contained, automated high-throughput open source software
pipeline for computational genomics in support of prokaryotic
sequencing projects. To ensure the relevance of our pipeline,
we checked the latest developments in computational genomics
software for all stages of the pipeline, such as new versions of
assembly and gene prediction programs and comparative surveys,
and selected what we deemed to be the most suitable software
packages. The pipeline is self-contained; that is, we used locally
installable versions of all third-party tools instead of web-based
services provided by many groups. We chose to do so for three
reasons: first, because some of the applications we envision for
this pipeline are of sensitive nature; second, to enhance robustness
to external changes (e.g., online API changes or website address
changes); and third, to improve the ability of developers to customize
and derive from our pipeline. The pipeline is also automated and
high-throughput: all components are organized in a hierarchical
set of readily modifiable scripts, and the use of safe programming
practices ensures that multiple copies of the pipeline can be run in
parallel, taking advantage of multiple processors where possible.

Importantly, by using and combining the outputs of competitive,
complementary algorithms for multiple stages of genome analysis,
our pipeline allows for substantial improvement upon single-
program solutions. The use of multiple algorithms also provides a
way to improve robustness and conduct more comprehensive quality
control when the output of one program is significantly different
from that of another.

Computational support provided to prokaryotic genome projects
by our pipeline can be subdivided into three stages: first, sequencing
and assembly; second, feature prediction; and third, functional
annotation. For the assembly stage, we developed a custom
protocol specific to 454 pyrosequenced data, which resulted in
a significant improvement to assembly quality of our test data
compared to the baseline assembler bundled by the manufacturer.
Other assemblers can be plugged in if necessary, and data from
other sequencing technologies such as ABI SOLiD, Illumina and
Sanger capillary-based machines can be used. For the prediction
stage, we again included a custom combination of feature prediction
methods for protein-coding genes, RNA genes, operon and
promoter regions, which improves upon the individual constituent
methods. The annotation stage includes several types of protein
functional prediction algorithms. We also developed components for
comparative analysis, interpretation and presentation (a web-based
genome browser), which can be used downstream of our pipeline.

We have tested the pipeline on the bacterium Neisseria
meningitidis, which is a human commensal of the nasopharanx and
which can sometimes cause meningitis or septicemia (Rosenstein
et al., 2001). When N.meningitidis does cause disease, it can
be devastating with an ∼10% fatality rate and 15% sequelae
rate. Neisseria meningitidis is a highly competent organism with

a high recombination rate, and large chromosomal changes are
common (Jolley et al., 2005; Schoen et al., 2008). This complicates
computational genome analysis and makes N.meningitidis an
appropriately challenging test for our pipeline. To demonstrate
the general applicability of the pipeline, we have also tested
it on a different pathogen, Bordetella bronchiseptica. Bordetella
bronchiseptica is a Gram-negative bacterium that can cause
bronchitis in humans, although it is more commonly found in smaller
mammals (Parkhill et al., 2003). Much like Neisseria, Bordetella has
extensive plasticity, likely due to the large number of repeat elements
(Gerlach et al., 2001). Here, we analyze the first two complete
genome sequences of B.bronchiseptica strains isolated from human
hosts.

The rest of this article is organized as follows. The ‘System and
Methods’ section describes the genomes which we used to test our
pipeline, overall organization of the pipeline, and details of the
algorithms used to perform tasks in the pipeline. In the ‘Discussion’
section, we discuss the objectives of our work on the pipeline and
how these relate to larger developments in computational biology
for next-generation sequencing.

2 SYSTEM AND METHODS

2.1 Genome test data
Neisseria meningitidis genomes were characterized via 454 pyrosequencing
(Margulies et al., 2005) using either half or one quarter plate runs on
the Roche 454 GS-20 or GS Titanium instrument (Table 1). For each
genome, a random shotgun library was produced using Roche protocols for
nebulization, end-polishing, adaptor ligation, nick repair and single-stranded
library formation. Following emulsion PCR, DNA bound beads were isolated
and sequenced using long-read (LR) sequencing kits. The number of reads
produced in the experiments ranged from 200 000 to 600 000, and the average
read lengths were between 100 and 330 bases. These data yielded 47.6–
94.3 million bases per genome amounting to 20–40× coverage for the
∼2.2 Mb N.meningitidis genomes. After read trimming and re-filtering to
recover short quality reads, the data were passed to the first stage of the
pipeline—genome assembly.

2.2 Pipeline organization
The analytical pipeline consists of three integrated subsystems: genome
assembly, feature prediction and functional annotation. Each subsystem
consists of a top-level execution script managing the input, output, format
conversion and combination of results for a number of distinct software
components. A hierarchy of scripts and external programs then performs the
tasks required to complete each stage of analysis (Fig. 1).

2.3 Assembly
Genome assembly was performed by evaluating multiple configurations of
assemblers including the standard 454 assembler, Newbler (version 2.3),
as well the Celera Assembler (Miller et al., 2008), the Phrap assembler
(http://www.phrap.org/) and the AMOScmp mapped assembler (Pop et al.,
2004). Several other assemblers were evaluated but ultimately excluded from
the pipeline due to use limitations: for instance, the ALLPATHS 2 assembler
(MacCallum et al., 2009) required paired-end reads to operate; our evaluation
data contained no paired-end reads, and such a requirement unnecessarily
constrains the user’s options. The widely used Velvet assembler (Zerbino and
Birney, 2008) was originally developed as a de novo assembler for Illumina
sequencing technology, but its capability has been extended to accommodate
454 data as well. However, we were unable to configure the Velvet assembler
to produce a usable assembly or take advantage of reference genomes using
454 data alone.
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Table 1. Summary of sequencing projects used in the pipeline development

Strain ID Sequence
typea

Serogroupb Geographic
originc

Date
collected

Genome
size

Closest
referenced

Substitutions
per position
versus ref.e

Total
reads

Total bases
sequenced

Average
read length

Coveragef Instrument
standardg

Neisseria meningitidis

NM13220 ST-7 A Philippines 2005 2.2M Z2491 0.076 197 067 47 569 493 241 21× GS-20
NM10699 ST-32 B Oregon,

USA
2003 2.2M MC58 0.053 418 751 81 775 264 195 37× GS-20

NM15141 ST-11 C New York,
USA

2006 2.2M FAM18 0.028 378 773 94 288 660 249 42× GS-20

NM9261 ST-11 W135 Burkina
Faso

2002 2.2M FAM18 0.030 206 634 69 957 473 338 31× GS Ti

NM18575 ST-2859 A Burkina
Faso

2003 2.2M Z2491 0.033 283 888 84 013 571 296 38× GS Ti

NM5178 ST-32 B Oregon,
USA

1998 2.2M MC58 0.050 270 332 88 664 981 328 40× GS Ti

NM15293 ST-32 B Georgia,
USA

2006 2.2M MC58 0.054 276 733 90 951 566 329 41× GS Ti

Bordetella bronchiseptica

BBE001 N/Ah N/A Georgia,
USA

1956 5.3M RB50 0.056 566 834 229 098 141 404 43× GS Ti

BBF579 N/A N/A Mississippi,
USA

2007 5.3M RB50 0.104 533 099 228 467 710 429 43× GS Ti

Data for each strain are presented in rows.
aSequence type denotes the allelic profile assigned by multilocus sequence typing (MLST; Holmes et al., 1999; Maiden et al., 1998) on the basis of seven loci within well-conserved
house-keeping genes.
bNeisseria meningitidis isolates are divided into serogroups by immunochemistry of polysaccharides present in their antiphagocytic capsule.
cThe region in which each strain was originally collected.
dStrain ID of the closest complete genome available in GenBank, as determined by 16S RNA phylogeny as well as whole-genome sequence identity, which agreed in all cases.
eInsertions, deletions and substitutions per position of genome as compared against the closest reference.
f Coverage denotes the average number of sequencing reads overlapping at a given position in the genome, calculated as the total number of bases sequenced divided by the estimated
length of the genome.
gThe standard of the 454 pyrosequencing instrument and reagents used to sequence the data.
hSequence typing and serotyping was not performed on B.bronchiseptica.

Fig. 1. Chart of data flow, major components and subsystems in the pipeline. Three subsystems are presented: genome assembly, feature prediction and
functional annotation. Each subsystem consists of a top-level execution script managing the input, output, format conversion and combination of results
for a number of components. A hierarchy of scripts and external programs then performs the tasks required to complete each stage. The legend for the
flowchart indicates the identities of the distinct pipeline components: data, pipeline component, optional component, external component and external,
optional component.

Evaluation of the results indicated that mapped assemblies of
N.meningitidis genomes using previously finished strains were of superior
quality to de novo assemblies. Using the most appropriate reference strains,
it was found that Newbler and AMOScmp complement each other’s

performance in the assembly stage, with Newbler being able to join some
contigs AMOScmp left gapped and vice versa. As a result, we decided to use
a combination of these two assemblers’ outputs for the final assembly. Then,
the Minimus assembler (Sommer et al., 2007) from the AMOS package, a
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Fig. 2. Comparative analysis of draft assembly with MAUVE. The top
pane represents the active assembly; vertical lines indicate contig boundaries
(gaps). The reference genomes are arranged in subsequent panes in order of
phylogenetic distance. Blocks of synteny (LCBs) are displayed in different
colors (an inversion of a large block is visible between panes 1–2 and 3–5).
Most gaps within LCBs were joined in the manually assisted assembly,
while considering factors such as sequence conservation on contig flanks
and presence of protein-coding regions.

simple assembler for short genomes, was used to combine the constituent
assemblies.

We also evaluated alternative base calling algorithms for 454
pyrosequencing data (Quinlan et al., 2008) but detected no improvement.
Over the course of our project, accuracy of base calling in the Newbler
assembler was reported to be significantly improved. We used the latest
version of the assembler available at publication time (Section 2.3).

An optional component of the pipeline was created for frameshift detection
using FSFind (Kislyuk et al., 2009). Frameshifts in protein-coding sequences
are a known result of pyrosequencing errors caused by undercalls and
overcalls in homopolymer runs (Kuo and Grigoriev, 2009). Briefly, this
package creates a GeneMark model of the genome, makes gene predictions,
and then scans the genome for possible frameshift positions on the basis
of ORF configuration and coding potential. Once the possible frameshift
sites are identified, a putative translation of the protein possibly encoded
by the broken gene is compared against a protein database (SwissProt
by default). The predicted frameshift site is also scanned for adjacent
homopolymers. A heuristic set of confidence score cutoffs is then used to
provide a set of frameshift predictions while minimizing the false positive
rate. The predicted frameshift sites can then be verified experimentally
or corrected speculatively. The user can inspect the dataset to decide
whether locations predicted to contain frameshifts break gene models, and
patch the sequences to fix up these positions. The prediction stage can
then be re-run to correct the gene predictions. While further experimental
analysis to address such errors is desirable (e.g. targeted PCR of predicted
error locations or a recently popular choice of combining sequencing
technologies such as 454 and Illumina), it incurs extra costs which we aim
to avoid.

Unfinished assemblies produced in this stage contained 90–300 contigs
each. No paired-end libraries or runs were available for the strains
analyzed, and therefore scaffolding of the contigs was a challenge. Manual
examination of the assemblies using the MAUVE (Darling et al., 2004)
multiple whole-genome alignment and visualization package revealed
numerous locations where contigs could be scaffolded with a small gap
or minimal overlap (Fig. 2). As an optional step, we produced a table
of such positions and a script which would scaffold contigs joined by
the gap.

Then, a manual gap joining stage used the layout of the contigs according
to their aligned positions on the reference using the AMOS package and
manual examination of each gap, adjacent contig alignments and reference
annotation in the MAUVE visualization tool. Although there is a possibility
that rearrangements exist in those gaps as mapped to the closest reference
genome, joining was only done after manual examination on a case-by-case
basis in positions of high homology and full consensus between four of the
reference strains, to minimize this possibility. While we provide the scripts
and data format definitions necessary to complete this stage of the pipeline,
it involves manual processing of the assembly and is therefore optional. This
component is similar in function to Mauve Contig Mover (Rissman et al.,
2009) but expands upon it in several ways. An option is provided in the
pipeline to use Mauve Contig Mover.

The manually assisted genome assembly procedure resulted in an order-
of-magnitude decrease in the number of gaps in comparison to the Newbler
assembler (which in turn performed the best out of all standalone assemblers
evaluated). In addition, the fully automated assembly metrics (N50 and contig
count at equal minimal size) are an ∼20–50% improvement upon baseline
Newbler performance (Table 2).

The contigs in the assembly stage output were named according to the
following format: prefix_contig#, where the prefix represents a unique strain
identifier and # represents the zero-padded sequential number indicating the
contig’s predicted order on the chromosome. For example, the 25th contig
for the N. meningitidis strain M13220 assembly would be named as
CDC_NME_M13320_025. The prefix used in the pipeline is configurable
by the user with a command line option.

2.4 Feature prediction
Feature prediction was performed in the genome using a suite of several
programs. To predict genes, we used a combination of de novo and
comparative methods. The Glimmer (Delcher et al., 1999) and GeneMark
(Besemer et al., 2001) microbial gene predictors were used for de novo
prediction, and BLASTp alignment (Altschul et al., 1997) of putative
proteins was used for comparative prediction. Self-training procedures
were followed for both de novo predictors, and the results, while highly
concordant, were different enough (Table 3) to justify the inclusion of both
algorithms. BLASTp alignment of all open reading frames (ORFs) at least
90 nt long was performed using the Swiss-Prot protein database (Boeckmann
et al., 2003).

The results of these three methods were combined together using a
combiner strategy outlined in Figure 3. In this strategy, we first check
that at least half of the predictors report a gene in a given ORF—in our
configuration, 2 of the 3 predictors. Then, the Met (putative translation
start) codon closest to the beginning of the BLAST alignment is found and
declared to be the gene start predicted by BLAST. We then find the gene start
coordinate reported by the majority of the three predictors and report the
resulting gene prediction. If no majority exists, we select the most upstream
gene start predicted.

In addition to protein-coding gene prediction, ribosomal genes were
predicted using alignment to a reference database of ribosomal operons,
and tRNA genes were predicted using the tRNAScan-SE package (Lowe
and Eddy, 1997). The results are summarized in Table 3.

Results of the feature prediction stage are saved in a multi-extent GenBank
formatted file. Features were named according to the following convention:
contig-name_feature-id, where contig-name is as described earlier, and
feature-id is a sequential zero-padded number unique to the feature across
all contigs. For example, a gene with feature ID 1293 on contig 25 might
have the name CDC_NME_M13320_025_1293.

To validate the overall accuracy of the gene prediction stage of the
pipeline, we ran our gene prediction tools on the genome of Escherichia coli
K12, one of the best-annotated bacterial genomes (analysis described in
the Supplementary Material). Our pipeline was able to detect 95.7% of
the annotated E.coli K12 protein-coding genes, and exactly predict starts in
85.5% of those. Fifty percent of the E.coli predictions that report incorrect
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Table 2. Summary of assembler performance

Strain ID Newbler statistics AMOScmp statistics Automatic combined assembly Manual combined assembly

Contigs >500 nt,
total size

N50a,
longest contig

Contigs >500 nt,
total size

N50,
longest contig

Contigs >500 nt,
total size

N50,
longest contig

Contigs >500 nt,
total size

% gapfill,
longest contig

NM13220 175
2.07M

22K
106K

202
2.06M

21K
77K

195
2.25M

31K
107K

57
2.30M

1.8%
398K

NM10699 102
2.10M

52K
143K

116
2.10M

43K
113K

83
2.17M

59K
143K

40
2.18M

1.1%
435K

NM15141 147
2.06M

33K
171K

190
2.05M

22K
115K

139
2.21M

36K
171K

50
2.28M

2.0%
759K

NM9261 99
2.09M

51K
184K

133
2.07M

37K
170K

128
2.16M

64K
231K

27
2.21M

1.6%
866K

NM18575 133
2.09M

30K
172K

147
2.09M

29K
88K

220
2.40M

53K
231K

N/Ac N/A

NM5178 89
2.13M

56K
136K

107
2.12M

42K
131K

104
2.17M

59K
136K

N/A N/A

NM15293 92
2.08M

52K
144K

110
2.06M

42K
132K

107
2.10M

59K
144K

N/A N/A

BBE001 146
5.05M

70K
212K

178
5.04M

61K
173K

214
5.03M

80K
252K

N/A N/A

BBF579 272
4.84M

57K
88K

321
4.84M

46K
94K

272b

4.84M
57K
88K

N/A N/A

Data for each strain are presented in rows. Statistics from standalone assemblers (Newbler and AMOScmp) are presented together with results of the combining protocol (default
output of the pipeline) and an optional, manually assisted predictive gap closure protocol.
aN50 is a standard quality metric for genome assemblies that summarizes the length distribution of contigs. It represents the size N such that 50% of the genome is contained in
contigs of size N or greater. Greater N50 values indicate higher quality assemblies.
bNo improvement was detected from the combined assembly in strain BBF579, and the original Newbler assembly was automatically selected.
cThe manual combined assembly protocol was not performed for these projects.

Table 3. Prediction algorithm performance comparison and statistics

Strain ID Gene predictions
by GeneMark

Gene predictions
by Glimmer3

Gene predictions
by BLAST

ORFs with full
consensusa

ORFs with partial
consensusb

Total gene predic-
tions reportedc

tRNAs predicted by
tRNAScan-SE

NM13220 2530 2725 1353 1325 974 2299 52
NM10699 2366 2494 1317 1284 826 2110 51
NM15141 2411 2578 1369 1343 841 2184 57
NM9261 2370 2553 1341 1308 802 2110 51
NM18575 2751 2927 1495 1448 1023 2471 63
NM5178 2377 2510 1315 1281 816 2097 52
NM15293 2062 2040 1285 1261 802 2063 51
BBE001 4793 4793 2744 2732 2067 4799 48
BBF579 4649 4646 2652 2635 2021 4656 48

Data for each strain are presented in rows. Prediction counts from the three standalone gene prediction methods are presented. Counts of protein-coding gene predictions reported
by our algorithm and tRNA genes are also shown. Data presented are based on the automatic combined assemblies from Table 2.
aNumber of ORFs with protein-coding gene predictions where all three predictors agreed exactly or with a slight difference in the predicted start site.
bORFs where only two of the three predictors made a prediction.
cTotal protein-coding gene predictions reported by the pipeline.

start codons start within 35 nt of the true start, and all reported starts are
within 200 nt of the true start.

2.5 Functional annotation
Functional annotation of genome features was also performed using a
combination of tools. Annotation of protein coding genes was based on
an integrated platform that makes use of six distinct annotation tools, four
of which employ intrinsic sequence characteristics for annotation and two
that use extrinsic homology-based approaches to compare sequences against

databases of sequences and structures with known functions. Information
on Gene Ontology (GO) terms, domain architecture and identity, subcellular
localization, signal peptides, transmembrane helices and lipoprotein motifs
is provided for each protein-coding gene (Fig. 4).

BLASTp alignment of predicted proteins was performed against the
UniProt database (Uniprot, 2009). Homology-based searches were also made
across thirteen sequence and protein domain databases with the InterProScan
suite (Mulder and Apweiler, 2007). Parsing of the results was carried
out against the corresponding InterPro database. The pipeline also stores
the top five hits for each gene against the NCBI non-redundant protein
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Fig. 3. Schematics of combining strategy for prediction stage. BLAST
alignment start, which may not coincide exactly with a start codon, is pinned
to the closest start codon. Then, a consensus or most upstream start is selected.

Fig. 4. Example functional annotation listing of a N.meningitidis gene
in the Neisseria Base. Draft genome data are shown including gene
location, prediction and annotation status, peptide statistics, BLAST hits,
signal peptide properties, transmembrane helix presence, DNA and protein
sequence. All names, locations, functional annotations and other fields are
searchable, and gene data are accessible from GBrowse genome browser
tracks.

database, to provide potentially useful information. All homology searches
were run locally. Signal peptides were annotated using the SignalP package
(Bendtsen et al., 2004) and transmembrane domains were annotated with
the TMHMM package (Krogh et al., 2001). State of the art in subcellular
localization algorithms was examined to ensure the best performance
given our operational requirements. Insertion sequences (transposases) and
proteins reported as virulence factors by VFDB (Chen et al., 2005; Yang et al.,
2008) were also annotated. These annotations of virulence-related features
make the pipeline particularly useful for projects working with pathogenic
prokaryotes. Results of this analysis are summarized in Table 4.

After the functional annotations were determined, a naming scheme was
employed for each locus to conform to standard annotation terminology.
Specific gene names were assigned according to homology-based results.
For genes that had a Uniprot result with a best hit at >91% amino acid
sequence identity and an e-value <1e-9, the gene assumed the best hit’s
name. If the best hit had the keyword ’hypothetical’, then we used a
domain name from InterPro to name the gene. For example, if a gene
was given the name ‘hypothetical’ from Uniprot and a domain name of
‘transferase’ from InterPro, then the final name was ‘hypothetical transferase
protein’. Therefore, most genes that were given ‘hypothetical’ or ‘putative’

prefixes could then be given a more compre-hensive name based on further
information such as domain names or protein functions. Genes with unknown
functions found across many genomes were given the name ‘conserved
hypothetical protein’, and all other putative genes with unknown functions
were given the name ‘putative uncharacterized protein’.

2.6 Availability
The pipeline software package is available at our website
(http://nbase.biology.gatech.edu). The package contains detailed instructions
and scripts for installation of the pipeline and all external programs,
documentation on usage of the pipeline and its organization. Components
which require large biological databases automatically download local
copies of those databases upon installation.

All of the N.meningitidis genomes reported here, along with custom
annotations and tools for searching and comparative sequence analysis,
are available for researchers online at our genome browser database
(http://nbase.biology.gatech.edu).

3 DISCUSSION

3.1 Genome biology of N.meningitidis and
B.bronchiseptica

We have used the pathogen N.meningitidis for the majority of
developmental and production testing of our pipeline. Although
N.meningitidis gains no fitness advantage from virulence, it
occasionally leaves its commensal state and causes devastating
disease (Meyers et al., 2003). Several recent studies have used
whole-genome analysis to determine the basis of virulence in this
species but none have been conclusive (Hotopp et al., 2006; Perrin
et al., 2002; Schoen et al., 2008). With the recent advent of next-
generation sequencing and the application of an analytical pipeline,
such as presented here, this problem and other problems like it can be
addressed in individual laboratories on a genome-wide scale. Here,
we briefly speculate on a few of the implications of our findings for
the genome biology of N.meningitidis to underscore the potential
utility of our pipeline.

Whole-genome analysis of microbes has led to the development
of the ‘pan-genome’ concept (Tettelin et al., 2005). A pan-genome
refers to the collection of all genes found within different strains
of the same species. An open pan-genome means that the genome
of any given strain will contain unique genes not found within the
genomes of other known strains of the same species. The extent
to which microbial pan-genomes are open is a matter of debate
(Lapierre and Gogarten, 2009). Recent studies have suggested that
the N.meningitidis pan-genome is essentially open (Schoen et al.,
2008), consistent with the fact that it is known to be a highly
competent species (Chen and Dubnau, 2004; Kroll et al., 1998).
We evaluated this hypothesis by finding the number of unique
genes in each of the seven strains reported here along with seven
previously published strains, using the results of our analytical
pipeline. Our findings are consistent with Schoen et al. (2008), in the
sense that every genome sequence was found to contain at least 43
unique genes not found in any other strain. Thus, the N.meningitidis
pan-genome does appear to be open.

N.meningitidis is a human commensal that most often does not
cause disease, and avirulent strains of the species are referred to as
carriage strains. Results of previous comparative genomic analyses
have been taken to suggest that carriage strains represent a distinct
evolutionary group that is basal to a group of related virulent strains
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Table 4. Feature annotation statistics

Strain ID Total number
of CDSa

Signal
peptidesb

Transmembrane
helicesc

Conserved hypothetical
proteins

Putative uncharacterized
proteins

Functional assignment
inferred from homology

Virulence
factorsd

NM13220 2299 326 (14.2%) 184 (8.0%) 10 (0.4%) 708 (30.8%) 603 (26.2%) 36 (1.6%)
NM10699 2110 310 (14.7%) 180 (8.5%) 5 (0.2%) 652 (30.9%) 577 (27.3%) 45 (2.1%)
NM15141 2184 317 (14.5%) 173 (7.9%) 16 (0.7%) 590 (27.0%) 583 (26.7%) 50 (2.3%)
NM9261 2110 303 (14.4%) 166 (7.9%) 13 (0.6%) 591 (28.0%) 558 (26.4%) 37 (1.8%)
NM18575 2471 349 (14.1%) 193 (7.8%) 13 (0.5%) 725 (29.3%) 668 (27.0%) 48 (1.9%)
NM5178 2097 298 (14.2%) 177 (8.4%) 3 (0.1%) 646 (30.8%) 572 (27.3%) 45 (2.1%)
NM15293 2063 304 (14.7%) 168 (8.1%) 6 (0.3%) 613 (29.7%) 567 (27.5%) 47 (2.3%)
BBE001 4799 977 (20.4%) 368 (7.7%) 9 (0.2%) 807 (16.8%) 1184 (24.7%) 54 (1.1%)
BBF579 4656 934 (20.1%) 339 (7.3%) 9 (0.2%) 739 (15.9%) 1171 (25.2%) 45 (1.0%)

Data for each strain are presented in rows. Data presented are based on the automatic combined assemblies from Table 2 and the gene predictions from Table 3.
aTotal putative protein-coding sequences analyzed.
bAs predicted by SignalP (Bendtsen et al., 2004); percentage of total CDS indicated in parentheses.
cAs predicted by TMHMM (Krogh et al., 2001).
dAs predicted by BLASTp alignment against VFDB (Chen et al., 2005; Yang et al., 2008); http://www.mgc.ac.cn/VFs/.

of N.meningitidis (Schoen et al., 2008). We tested this hypothesis
using the results of our analytical pipeline applied to three carriage
strains and eight virulent strains of N.meningitidis. Whole-genome
sequences were aligned and pairwise distances between genomes,
based on nucleotide diversity levels, were compared within and
between groups of carriage and virulent strains. We found that
average of the pairwise genome sequence distances within (w)
the carriage and virulent groups of strains was not significantly
different from the average pairwise distances between (b) groups
(w=0.074±0.027, b=0.090±0.014, t =0.693, P=0.491). This
result is inconsistent with the previously held notion that carriage
and virulent strains represent distinct evolutionary groups based on
whole-genome analysis. However, our findings are consistent with
earlier work that found little genetic differentiation between carriage
and virulent strains of N.meningitidis (Jolley et al., 2005).

Currently, there is no unambiguous molecular assay to distinguish
B.bronchiseptica from other Bordetella species. One reason the
two B.bronchiseptica genomes reported here were characterized
was to discover genes unique to the species (i.e. not present in
any other Bordetella species) to facilitate the development of a
B.bronchiseptica-specific PCR assay. To identify such genes, we
performed BLASTn with B.bronchiseptica query genes uncovered
by our pipeline against other B.bronchiseptica strain genomes
along with four genomes of closely related Bordetella species. We
uncovered a total of 223 genes that are present in all B.bronchiseptica
strains and absent in all other Bordetella species. To narrow down
this set of potential PCR assay targets, we searched for the most
conserved B. bronchiseptica-specific genes. As a point of reference,
we determined the sodC gene used in the N.meningitidis-specific
PCR assay (Kroll et al., 1998) to be 99.6% identical among all six
completely sequenced strains of N.meningitidis. There are seven B.
bronchiseptica-specific genes with ≥99.6% sequence identity; these
genes represent a prioritized list of potential PCR assay targets.

3.2 Computational genomics pipeline
We have presented our computational genomics pipeline, a local
solution for automated, high-throughput computational support of
prokaryotic genome sequencing projects. While the revolution
in sequencing technology makes possible the execution of

genome projects within individual laboratories, the computational
infrastructure to fully realize this possibility does not yet exist.
We made a comprehensive effort to put the tools required for
this infrastructure into the hands of biologists working with next-
generation sequencing data. Our aim in the course of this project was
to facilitate decentralized biological discoveries based on affordable
whole-genome prokaryotic sequencing, a mode of science termed
‘investigator-initiated genomics’. For example, one project enabled
by the pipeline in our laboratory is a platform for SNP detection and
analysis in groups of bacterial genomes.

One of our major goals was to provide full automation of our
pipeline’s entire workflow, and this has been achieved. On the
other hand, to allow computationally savvy users to realize the
power of customizability, a semi-automated process is desirable.
We have made an effort to strike a balance between these objectives,
and provide a modular, hierarchically organized structure to permit
maximum customization when so desired.

The state of the art in prokaryotic computational genomics
moves at a formidable pace. The modular organization of our
pipeline, along with the emphasis on integration of complementary
software tools, allows us to continually update our platform to keep
pace with developments in computational genomics. For instance,
if a new, better assembler becomes available, we can include
its results in the assembly stage with a simple change to the
pipeline code.
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