Supplement #1 for

A simple method for visualization of sphingolipid and glycosphingolipid pathway transcriptomic data to predict metabolomic differences: Application to cancer

Amin A. Momin, Hyejung Park, Brent J. Portza, Christopher A. Haynes, Rebecca L. Shaner, Samuel L. Kelly, I. King Jordan and Alfred H. Merrill, Jr.

Supplement 1: Table S1. Glycosyltransferase genes

Supplement 1A: Perl program to extract normalized glycosphingolipid gene expression values

Supplement 1B: Gene list and preselected probe IDs for Affymetrix HG-U133 plus2

Supplement 1C: Application of data to Pathvisio

Homo sapiens	Gene Name	Abbreviation	References
Gene			
		GlcCer Synthase,	
UGCG	Ceramide glucosyltransferase	UGCG, GlcT-I, GCS	[1]
UGT8, CGT	GalCer synthase	CGT	[2]
β4GALTI,	β- <i>N</i> -acetylglucosaminyl-glycopeptide β-1,4-		
B4GALT1	galactosyltransferase I	β4GalT-I, B4GALT1	[3]
B4GALT2, β4Gal-	β - <i>N</i> -acetylglucosaminyl-glycopeptide β -1,4-		
T2	galactosyltransferase II	β4GalT-II, B4GALT2	[4]
	β - <i>N</i> -acetylglucosaminyl-glycopeptide β -		
B4GAL13	1,4-galactosyltransferase IIII	p4GalT-III,	[4]
	R N apotrilaluoogominul aluoonontido R 1 4		
BAGALTA	p-IN-acety/glucosaminy-grycopeptide p-1,4-	B4CalT IV	
DHGALTH	B-N-acetylalucosaminyl-alycopentide B-1.4-	p40a11-1v	
B4GALT5	galactosyltransferase V	64GalT-V	[5]
510,1210	β-N-acetylglucosaminyl-glycopeptide β-1.4-	prourr	
B4GALT6	galactosyltransferase VI	β4GalT-VI	[6]
B3GALT1	β3-galactosyltrasferase I	β3GalT-I	
B3GALT2	β3-galactosyltrasferase II	β3GalT-II	[7]
		β3GalT-IV,	
		GM1/GD1b/GA1	
B3GALT4, GalT4,		synthase, β 3GalT,	
β3GalT4	β3-galactosyltrasferase IV	Gal-T2	[7]
B3GalT5	β3-galactosyltrasferase V	β3GalT-V	[8]
	<i>N</i> -acetyllactosaminide 3-α-	α 3GalT, iGb ₃	
A3GAL12	galactosyltransferase	synthase	[9]
β3GICNACI I	62 N. A satulal use sominultrasferress (iC n T)	R2CalNIA aT CmT	[10]
(10111) B2CleNAeT2	p5-N-Acetylgiucosanninylitasielase (10111)	psoannaci, ioni	
B3GlcNAcT3			
B3GlcNAcT4			
B3GlcNAcT5			
IGnT	β6-N-A cetylalucosaminyltrasferase (IGnT)	B6GalNAcT_IGnT	
	po-n-Acceyigideosaniniyidasiciase (10111)	B6GlcNAcT	
	Core 2 ß6-N-Acetylglucosaminyltransferase	Core2GlcNAcT-L	
Core2GlcNAcT-I	I	GNT	[11]
B4GALNT1		64GalNAcT	
	β4-N-Acetylgalactosaminyltrasferase	GM2/GD2 synthase	[12]
	Histoblood group A transferase	2	[13]
	Histoblood group B transferase		
Forssman synthase	Forssman Glycolipid Synthase	α3GalNAcT	[14, 15]
			Y. Yoda et al. / J.
			Biochem (Tokyo)
			88 (1980) 1887-
	para-Forssman Glycolipid Synthase		1890
Fut1, Fut2	α1/2-Fucosyltransferase	FUT1, H, HH, HSC	[16]
FUT2		FUT2, SE, Se2, sej	[17]
		FUT3, Lewis	
		enzyme, LE, Les,	
		CD174,	14.01
FUI3, FUC-1111	α 3/4-Fucosyltransterase		[18]
I FUI4. ELFI.	α 3-Fucosvitransterase-IV	I FUI4, CD15, ELFI.	1 1 1 9 1

Supplement 1 Table 1 Glycosyltransferase genes

FCT3A, FUC-TIV		FCT3A, FUC-TIV	
FUT5, FUC-TV	α3-Fucosyltransferase-V	FUT5, FUC-TV	[20]
		FUT6, FT1A,	
FUT6	α3-Fucosyltransferase-VI	FLJ40754	[21]
FUT7, Fuc-TVII	α3-Fucosyltransferase-VII	FUT7	[22]
FUT9, Fuc-TIX	α3-Fucosyltransferase-IX	FUT9, FUC-TIX	[23, 24]
	Sialyltransferase 3	SAT-III	
SIAT4B	ST3Gal-II	SAT-IV	[25, 26]
		GM3 synthase,	
SIAT9	ST3Gal-V	SAT-I	[27]
ST6GALNAC3	ST6GalNAc-III	STY	[28]
ST6GALNAC5	ST6GalNAc-V	GD1α synthase	[29]
ST6GALNAC6	ST6GalNAc-VI		[30]
ST8SIA1, SIAT8A,		GD3 synthase,	
GD3 synthase	ST8Sia-I	SAT-II	[31]
ST8SIA3	ST8Sia-III	GT3 synthase	[32]
		SAT-V/SAT-III,	
		GQ1b/GT1a/GD1c	
ST8SIA5	ST8Sia-V	synthase	[33]
GlcAT-P, B3GAT1	HNK-1 Glucuronlytransferase		[34]
	HNK-1 Sulfotransferase	HNK-1 SulfoT	[35]
GAL3ST1, CST	βGal 3-Osulfotransferase-1	Gal3ST-1	[36]
A4galt, Gb3			
synthase		Gb3/CD77 synthase,	
	LacCer 4-a-galactosyltransferase	α1,4-GalT	[37]
beta3GalNAc-T1	Gb3 3-β-N-acetylgalactosaminyltransferase	Globoside synthase	[38]
SLC33A1, ACATN	O-Acetyltransferase		[39]

Table1: List of modifications in the altered pathway maps for different branches of sphingolipid biosynthesis. The reason and suitable reference is provided for each change.

- 1. Ichikawa S, Sakiyama H, Suzuki G, Hidari KI, Hirabayashi Y: **Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis**. *Proc Natl Acad Sci U S A* 1996, **93**(10):4638-4643.
- Bosio A, Binczek E, Le Beau MM, Fernald AA, Stoffel W: The human gene CGT encoding the UDP-galactose ceramide galactosyl transferase (cerebroside synthase): cloning, characterization, and assignment to human chromosome 4, band q26. *Genomics* 1996, 34(1):69-75.
- 3. Lee PL, Kohler JJ, Pfeffer SR: Association of beta-1,3-N-acetylglucosaminyltransferase 1 and beta-1,4-galactosyltransferase 1, trans-Golgi enzymes involved in coupled poly-N-acetyllactosamine synthesis. *Glycobiology* 2009, **19**(6):655-664.
- Almeida R, Amado M, David L, Levery SB, Holmes EH, Merkx G, van Kessel AG, Rygaard E, Hassan H, Bennett E *et al*: A family of human beta4-galactosyltransferases. Cloning and expression of two novel UDP-galactose:beta-n-acetylglucosamine beta1, 4-galactosyltransferases, beta4Gal-T2 and beta4Gal-T3. J Biol Chem 1997, 272(51):31979-31991.
- 5. Kumagai T, Tanaka M, Yokoyama M, Sato T, Shinkai T, Furukawa K: **Early lethality of beta-1,4-galactosyltransferase V-mutant mice by growth retardation**. *Biochem Biophys Res Commun* 2009, **379**(2):456-459.

- Wandall HH, Pizette S, Pedersen JW, Eichert H, Levery SB, Mandel U, Cohen SM, Clausen H: Egghead and brainiac are essential for glycosphingolipid biosynthesis in vivo. J Biol Chem 2005, 280(6):4858-4863.
- Amado M, Almeida R, Carneiro F, Levery SB, Holmes EH, Nomoto M, Hollingsworth MA, Hassan H, Schwientek T, Nielsen PA *et al*: A family of human beta3-galactosyltransferases.
 Characterization of four members of a UDP-galactose:beta-N-acetyl-glucosamine/beta-nacetyl-galactosamine beta-1,3-galactosyltransferase family. J Biol Chem 1998, 273(21):12770-12778.
- 8. Isshiki S, Togayachi A, Kudo T, Nishihara S, Watanabe M, Kubota T, Kitajima M, Shiraishi N, Sasaki K, Andoh T *et al*: Cloning, expression, and characterization of a novel UDP-galactose:beta-N-acetylglucosamine beta1,3-galactosyltransferase (beta3Gal-T5) responsible for synthesis of type 1 chain in colorectal and pancreatic epithelia and tumor cells derived therefrom. *J Biol Chem* 1999, 274(18):12499-12507.
- 9. Keusch JJ, Manzella SM, Nyame KA, Cummings RD, Baenziger JU: Expression cloning of a new member of the ABO blood group glycosyltransferases, iGb3 synthase, that directs the synthesis of isoglobo-glycosphingolipids. *J Biol Chem* 2000, **275**(33):25308-25314.
- Sasaki K, Kurata-Miura K, Ujita M, Angata K, Nakagawa S, Sekine S, Nishi T, Fukuda M: Expression cloning of cDNA encoding a human beta-1,3-N-acetylglucosaminyltransferase that is essential for poly-N-acetyllactosamine synthesis. *Proc Natl Acad Sci U S A* 1997, 94(26):14294-14299.
- 11. Sekine M, Nara K, Suzuki A: Tissue-specific regulation of mouse core 2 beta-1,6-Nacetylglucosaminyltransferase. J Biol Chem 1997, 272(43):27246-27252.
- 12. Nagata Y, Yamashiro S, Yodoi J, Lloyd KO, Shiku H, Furukawa K: **Expression cloning of beta 1,4 N**acetylgalactosaminyltransferase cDNAs that determine the expression of GM2 and GD2 gangliosides. J Biol Chem 1992, **267**(17):12082-12089.
- Yamamoto F, Marken J, Tsuji T, White T, Clausen H, Hakomori S: Cloning and characterization of DNA complementary to human UDP-GalNAc: Fuc alpha 1----2Gal alpha 1----3GalNAc transferase (histo-blood group A transferase) mRNA. J Biol Chem 1990, 265(2):1146-1151.
- 14. Kijimoto S, Ishibashi T, Makita A: **Biosynthesis of Forssman hapten from globoside by alpha-N**acetylgalactosaminyltransferase of guinea pig tissues. *Biochem Biophys Res Commun* 1974, 56(1):177-184.
- 15. Yoda Y, Ishibashi T, Makita A: Isolation, characterization, and biosynthesis of Forssman antigen in human lung and lung carcinoma. *J Biochem* 1980, **88**(6):1887-1890.
- Sarnesto A, Kohlin T, Hindsgaul O, Thurin J, Blaszczyk-Thurin M: Purification of the secretor-type beta-galactoside alpha 1----2-fucosyltransferase from human serum. *J Biol Chem* 1992, 267(4):2737-2744.
- 17. Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB: Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J Biol Chem 1995, 270(9):4640-4649.
- 18. Kukowska-Latallo JF, Larsen RD, Nair RP, Lowe JB: A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group alpha(1,3/1,4)fucosyltransferase. *Genes Dev* 1990, 4(8):1288-1303.
- 19. Kumar R, Potvin B, Muller WA, Stanley P: Cloning of a human alpha(1,3)-fucosyltransferase gene that encodes ELFT but does not confer ELAM-1 recognition on Chinese hamster ovary cell transfectants. *J Biol Chem* 1991, **266**(32):21777-21783.
- 20. Weston BW, Nair RP, Larsen RD, Lowe JB: Isolation of a novel human alpha (1,3)fucosyltransferase gene and molecular comparison to the human Lewis blood group alpha

(1,3/1,4)fucosyltransferase gene. Syntenic, homologous, nonallelic genes encoding enzymes with distinct acceptor substrate specificities. *J Biol Chem* 1992, **267**(6):4152-4160.

- 21. Koszdin KL, Bowen BR: The cloning and expression of a human alpha-1,3 fucosyltransferase capable of forming the E-selectin ligand. *Biochem Biophys Res Commun* 1992, **187**(1):152-157.
- 22. Natsuka S, Gersten KM, Zenita K, Kannagi R, Lowe JB: Molecular cloning of a cDNA encoding a novel human leukocyte alpha-1,3-fucosyltransferase capable of synthesizing the sialyl Lewis x determinant. *J Biol Chem* 1994, **269**(24):16789-16794.
- 23. Johnson PH, Yates AD, Watkins WM: Human salivary fucosyltransferases : evidence for two distinct alpha-3-L-fucosyltransferase activities one or which is associated with the Lewis blood group Le gene. *Biochem Biophys Res Commun* 1981, **100**(4):1611-1618.
- 24. Nishihara S, Iwasaki H, Kaneko M, Tawada A, Ito M, Narimatsu H: Alpha1,3-fucosyltransferase 9 (FUT9; Fuc-TIX) preferentially fucosylates the distal GlcNAc residue of polylactosamine chain while the other four alpha1,3FUT members preferentially fucosylate the inner GlcNAc residue. *FEBS Lett* 1999, **462**(3):289-294.
- 25. Rearick JI, Sadler JE, Paulson JC, Hill RL: Enzymatic characterization of beta D-galactoside alpha2 leads to 3 sialyltransferase from porcine submaxillary gland. *J Biol Chem* 1979, 254(11):4444-4451.
- 26. Sadler JE, Rearick JI, Paulson JC, Hill RL: **Purification to homogeneity of a beta-galactoside alpha2 leads to 3 sialyltransferase and partial purification of an alpha-Nacetylgalactosaminide alpha2 leads to 6 sialyltransferase from porcine submaxillary glands**. *J Biol Chem* 1979, **254**(11):4434-4442.
- 27. Kono M, Takashima S, Liu H, Inoue M, Kojima N, Lee YC, Hamamoto T, Tsuji S: **Molecular cloning** and functional expression of a fifth-type alpha 2,3-sialyltransferase (mST3Gal V: GM3 synthase). *Biochem Biophys Res Commun* 1998, 253(1):170-175.
- 28. Sjoberg ER, Kitagawa H, Glushka J, van Halbeek H, Paulson JC: **Molecular cloning of a** developmentally regulated N-acetylgalactosamine alpha2,6-sialyltransferase specific for sialylated glycoconjugates. *J Biol Chem* 1996, **271**(13):7450-7459.
- 29. Okajima T, Fukumoto S, Ito H, Kiso M, Hirabayashi Y, Urano T, Furukawa K: Molecular cloning of brain-specific GD1alpha synthase (ST6GalNAc V) containing CAG/Glutamine repeats. *J Biol Chem* 1999, **274**(43):30557-30562.
- 30. Okajima T, Chen HH, Ito H, Kiso M, Tai T, Furukawa K, Urano T: Molecular cloning and expression of mouse GD1alpha/GT1aalpha/GQ1balpha synthase (ST6GalNAc VI) gene. *J Biol Chem* 2000, **275**(10):6717-6723.
- 31. Eppler CM, Morre DJ, Keenan TW: Ganglioside biosynthesis in rat liver: characterization of cytidine-5'-monophospho-n-acetylneuraminic acid:hematoside (GM3) sialyltransferase. Biochim Biophys Acta 1980, 619(2):318-331.
- 32. Yoshida Y, Kojima N, Kurosawa N, Hamamoto T, Tsuji S: **Molecular cloning of Sia alpha 2,3Gal beta 1,4GlcNAc alpha 2,8-sialyltransferase from mouse brain**. *J Biol Chem* 1995, **270**(24):14628-14633.
- 33. Kono M, Yoshida Y, Kojima N, Tsuji S: Molecular cloning and expression of a fifth type of alpha2,8-sialyltransferase (ST8Sia V). Its substrate specificity is similar to that of SAT-V/III, which synthesize GD1c, GT1a, GQ1b and GT3. *J Biol Chem* 1996, **271**(46):29366-29371.
- 34. Mitsumoto Y, Oka S, Sakuma H, Inazawa J, Kawasaki T: **Cloning and chromosomal mapping of human glucuronyltransferase involved in biosynthesis of the HNK-1 carbohydrate epitope**. *Genomics* 2000, **65**(2):166-173.
- 35. Chou DK, Tobet SA, Jungalwala FB: **Restoration of synthesis of sulfoglucuronylglycolipids in cerebellar granule neurons promotes dedifferentiation and neurite outgrowth**. *J Biol Chem* 1998, **273**(14):8508-8515.

- 36. Ogawa D, Shikata K, Honke K, Sato S, Matsuda M, Nagase R, Tone A, Okada S, Usui H, Wada J *et al*: **Cerebroside sulfotransferase deficiency ameliorates L-selectin-dependent monocyte infiltration in the kidney after ureteral obstruction**. *J Biol Chem* 2004, **279**(3):2085-2090.
- 37. Kojima Y, Fukumoto S, Furukawa K, Okajima T, Wiels J, Yokoyama K, Suzuki Y, Urano T, Ohta M: Molecular cloning of globotriaosylceramide/CD77 synthase, a glycosyltransferase that initiates the synthesis of globo series glycosphingolipids. J Biol Chem 2000, 275(20):15152-15156.
- 38. Okajima T, Nakamura Y, Uchikawa M, Haslam DB, Numata SI, Furukawa K, Urano T: **Expression** cloning of human globoside synthase cDNAs. Identification of beta 3Gal-T3 as UDP-Nacetylgalactosamine:globotriaosylceramide beta 1,3-N-acetylgalactosaminyltransferase. *J Biol Chem* 2000, 275(51):40498-40503.
- 39. Kanamori A, Nakayama J, Fukuda MN, Stallcup WB, Sasaki K, Fukuda M, Hirabayashi Y:
 Expression cloning and characterization of a cDNA encoding a novel membrane protein
 required for the formation of O-acetylated ganglioside: a putative acetyl-CoA transporter. Proc
 Natl Acad Sci U S A 1997, 94(7):2897-2902.

Supplement 1A: Perl program to extract normalized glycosphingolipid gene expression values

```
#!/usr/bin/Perl
# microarray filtering file
use strict;
use warnings;
my $Micro = $ARGV[0]; # Microarray file neme
my $GeneList = $ARGV[1]; # Gene or probelist file
open(MICRO, $Micro)||die"cannot open microarray file\n";
open(LIST, $GeneList)||die"cannot open genelist file\n";
my %hash= ();
while(my $line = <LIST>) {
    chomp($line);
    my @words = split(/\t/,$line);
    my $id = $words[0];
    hash{= 0;
}
my @keys = keys(%hash);
my $num = @keys;
while(my $gene = <MICRO>)
{
   chomp($gene);
    for(my $i=0; $i < $num; $i++)</pre>
    {
      my $key = $keys[$i];
      chomp($key);
       if ($gene =~ m/$key/i)
        {
          print "$gene \n";
        }
     }
}
close(MICRO);
close(LIST);
```

Instructions for using Perl program for filtering sphingolipid genes: on windows PC install the Activeperl package from <u>www.activestate.com</u> (Perl is already installed on Mac OS in the X-terminal). Copy and paste the above script in text editor (notepad) and save it as 'genefilter.pl' in a separate folder. Next copy and paste the list of gene IDs and probe IDs into separate text file and save them as 'shingogene.txt' or 'sphingoprobe.txt' in the same folder as the Perl script. Save the normalized microarray dataset with gene expression values and gene ID or affymetrix probe IDs in a tab delineated text file in the folder along with the gene/probe list and the Perl script. To filter the sphingolipid related gene expression values from all the microarray gene probes run the Perl script on the command line (as shown in the figure below for windows PC).

'c:\perl> perl genefilter.pl microarrayfile.txt sphingogene.txt > microarraysphingo.txt'

The script generates an output text file 'microarraysphingo.txt' with the selected sphingolipid gene expression values, which is used to prepare pathvisio input dataset file.

Supplement 1B: Gene list and preselected probe IDs for Affymetrix HG-U133 plus2

Gene Symbol Probe Set ID A4GALT 219488_at ABO 214504_at AGA 204332_s_at AOAH 205639_at ASAH1 1555419_a_at B3GALNT2 1562391_at B3GALT1 222969_at B3GALT2 210121_at B3GALT4 210205_at B3GALT5 206947_at B3GALT6 1553959_a_at B3GNT1 203188_at B3GNT2 219326_s_at B3GNT3 204856_at B3GNT4 221240_s_at B3GNT5 1554835_a_at B3GNT6 1552833_at B3GNT7 1552965_a_at B3GNT8 237338_at B4GALNT1 206435_at 1552903_at B4GALNT2 B4GALNT3 1553727_at B4GALNT4 238080_at B4GALT1 216627_s_at B4GALT2 209413_at B4GALT3 210243_s_at B4GALT4 210540_s_at B4GALT6 206232_s_at BGLAP 206956_at CERK 218421_at

A user may use either gene list or preselected probe ids to extract gene expression information

CERKL	243366_s_at
ELOVL1	218028_at
ELOVL2	220029_at
ELOVL3	234513_at
ELOVL4	219532_at
ELOVL5	208788_at
ELOVL6	210868_s_at
FUT1	206109_at
FUT10	235472_at
FUT11	238551_at
FUT2	208505_s_at
FUT9	207696_at
FVT1	202419_at
GAL3ST1	205670_at
GAL3ST2	1553046_s_at
GAL3ST3	1553257_at
GAL3ST4	219815_at
GALNT2	217787_s_at
GBGT1	231780_at
GCNT1	205505_at
GLA	214430_at
GM2A	209727_at
GM2A_1	215890_at
HEXA	1559932_at
HEXB	201944_at
LASS1	229448_at
LASS2	222212_s_at
LASS3	1554253_a_at
LASS4	218922_s_at
LASS5	224951_at
LASS6	242019_at
NAGA	202943_s_at
PHCA	222688_at

PPAP2A	209147_s_	_at
PPAP2B	232324_x	_at
PPAP2C	209529_a	t
SGPL1	212322_a	t
SGPP2	244780_a	t
SMPD1	209420_s	_at
SMPD1_2	217171_a	t
SMPD3	231732_a	t
SMS	202043_s_	_at
SPHK1	219257_s	_at
SPHK2	209857_s	_at
SPTLC1_2	1554053_	at
SPTLC1	202278_s_	_at
SPTLC2	203127_s	_at
SPTLC2_1	203128_a	t
SPTLC2_2	216203_a	t
SPTLC3_2	220456_a	t
SPTLC3	227752_a	t
ST3GAL1	208322_s_	_at
ST3GAL2	205346_a	t
ST3GAL3	1555171_	at
ST3GAL4	203759_a	t
ST3GAL5	203217_s	_at
ST3GAL6	213355_a	t
ST6GAL1	214971_s_	_at
ST6GAL2	1555123_	at
ST6GALN	AC1	227725_at
ST6GALN/	AC2	204542_at
ST6GALN/	4C3	235334_at
ST6GALN	AC4	228163_at
ST6GALN/	AC5	220979_s_at
ST6GALN/	AC6	222571_at
ST8SIA1	210073_a	t

ST8SIA5	206258_at
TRAM2	1554383_a_at
UGCG	204881_s_at
UGT8	208358_s_at
COL4A3B	P 223466_x_at
ASAH3	1553929_at
FUT3	216010_x_at
SLC33A1	203164_at
B3GALNT	1 223374_s_at
A3GALT2	
ASAH2	231791_at
DEGS1	209250_at
DEGS2	236496_at
SGMS1	212989_at
SGMS2	242963_at

Supplement 1C

Application of data to Pathvisio:

Formatting the input file

Gene expression data for sphingolipid specific genes extracted with the perl Script (Supplement 1A) should be formatted into a pathvisio input file with three essential columns and saved as a comma separated file (.csv). An example is given below

System	mCode	Fold
at	Х	-1.143967291
at	Х	1.010328449
a_at	Х	1.422851697
s_at	Х	1.220136212
at	Х	1.113669687
at	Х	4.407868628
a_at	Х	1.83540546
at	Х	-2.338778491
a_at	Х	1.068452133
a_at	Х	1.139011527
a_at	Х	2.045004684
at	Х	2.645276048
at	Х	-1.123596112
_a_at	Х	-2.284137975
	System _at _a_at _s_at _at _at _a_at _a_at _a_at _at _at _a	SystemCode _at X _a_at X _a_at X _a_at X _at X _a_at X

GeneID is the gene identifier or probe ID

SystemCode -- type of gene identifier

Fold – the calculated fold change for the specific gene probe.

Further information about the tile format can be obtained from www.pathvisio.org

Instruction of download of maps from wikipathways

Visit www.wikipathways.org

Browse for pathway and click for Sphingolipid metabolism

In the download link select PathVisio (.gmpl)

Save the pathway maps in a folder in the pathvisio directory

Creating Pathway diagrams with expression data in Pathvisio.

Open the pathway map in Pathvisio browser

Create a expression data using formatted expression file

In the menu select $Data \rightarrow Import expression data$

Select the 'input file' (previously prepared .csv file) and 'output file'

Follow the steps by clicking next

Choose data delimiter ightarrow 'comma' , Next

Select 'systemcode' then Next

Visualization of expression values

Select the dataset Data \rightarrow 'select expression data'

Select Data \rightarrow 'visualization options'

Define the color criteria

After the completion the map should be colored according to the selected criteria.

For further details about the steps one can refer the Pathvisio user tutorial at <u>www.pathvisio.org</u>

Supplement #2

for

A simple method for visualization of "omic" datasets for sphingolipid metabolism to predict potentially interesting differences

Amin A. Momin^a, Hyejung Park^a, Brent J. Portz^a, Christopher A. Haynes^a,

Rebecca L. Shaner^b, Samuel L. Kelly^a, I. King Jordan^a and Alfred H. Merrill, Jr.* ^{a,b}

^aSchool of Biology, ^bSchool of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA

Screen capture figures for online tutorial

This tutorial is available on the web site:

http://sphingolab.biology.gatech.edu/sphingoPathvisioTutorial1.html

Prepared by Amin Momin, Hyejung Park, Brent Portz, Alfred H. Merrill, Jr. Copyright© 2010 & 2011 Georgia Institute of Technology All rights reserved.

IAP <u>Home</u> / <u>SphinGOMAP</u> / <u>Sphingo-GeneMap</u> / <u>SOURCES</u> / <u>LINKS</u>

Sphingolipid and glycosphingolipid biosynthesis pathway maps

Updated pathway maps were prepared to visualize differences in gene expression and metabolites

of the sphingolipid biosynthesis pathway using an open acess pathway browser, Pathvisio v1.1.

The modifications in the maps include newly discovered gene isoforms and metabolite brances as

reported in the current literature and summarized in BMC systems biology.

The procedure involved in the selection and extraction of gene expession datasets for the

Park, Brent Portz, Alfred H. Merrill, Jr. preparation of the pathway maps are displayed in the flow diagram (Fig 1). The individual

step involved in the preparation of the pathway diagrams are elaborated in the tutorial.

The tutorial below describes the steps required to visulaize gene expression differences

using a sample microarray dataset. Details for preparation of pathway maps from raw affymetrix

datasets (.CEL files) are discussed in the later section

Begin at *Pathvisio Tutorial* if you have sphingolipid gene expression values. If not, skip to *Preparation of Expression Datasets from Raw Microarray Data File*.

PathvioTutorial

Download Pathvisio browser, and gene and metabolite databases (latest version):

The Browser Software and the Human Genome and Metabolite *Databases* should be downloaded from <u>www.Pathvisio.org</u> (van Iersel et.al , BMC Bioinformatics. 2008 Sep 25;9:399). Separate downloaders are required to be downloaded for the databases prior to thier download. <u>Java Virtual Machine</u> should be installed *prior* to running Pathvisio browser and downloading databases.

Importing Gene Expression Values:

1) Pathvisio Permits Data Application and Editing of Pathway Map Files. Such files for the Different Branches of the Sphingolipid Biosynthesis are included:

Human Pathway: click on the links below and saves the files as '.gpml' in pathways folder.

<u>De Novo</u> Ganglio Globo

2) A Sample Microarray Dataset is Provided to Prepare Pathway Maps within Pathvisio:

Differential gene expression between basal and luminal breast cancer cell lines (GSE12777: Hoeflich et. al, Clin Cancer Res 2009 Jul 15;15(14):4649-64.)

Download the file and save as .csv format in the pathvisio folder.

3) Pathvisio Requires the Conversion of the Microarray Dataset to a Specific File. To Create the Expression Data File:

Open the downloaded pathway map in Pathvisio browser.

From the File menu -> Open and then choose the downlaoded map (.gpml file).

Select human gene database (The latest version)

From the Data menu -> Gene Database -> Databases (choose human Hs_Derby_20xx.pgdb).

Prepare a Pathvisio expression dataset from sample dataset:

From the Data menu -> Import Expression Data

Within 'Expression data import wizard' Select the `Input file' (previously prepared .csv file)

and a default output file is selected (.pgex).

j DenovoSphingoMet le Edit Data View I	ab_095_supplement.gpml - PathVisio 2.0.5 Help
š ൙ 📕 💊 的	Zoom: 75% → @m Mer Lakel ≕ → □ ○ ∩ } → モ → 旨 皆
iource: GenMAPP 2.0	
Expression dat	a import wizard
Choose file loca	ations
Input file	iectsLaptop\Informatics paper\website\GSE12777 BL patvisio.csv Browse
Output file	ctsLaptop\Informatics paper\website\GSE12777 BL patvisio.pgex Browse
Gene database	dmanner-ngdh/C+\Pathvisin\databases\Hs_Derby_20081119 ngdh
	Back Next Cancel
§	
	200 0 C

Follow the steps by clicking next.

Choose Data Delimiter -> 'Comma' -> Next

🔔 Deno	ovoSphingoMe	tab_U95_supp	olement.gpml -	PathV	isio 2.0).5												
File Edi	it Data View	Help		_											194541			
🛛 🖄 🗁		Zoom:	75%	Gen	е Мет і	Label	<u>⇒</u> •		\circ		>	-	-0-	• 2	, F-	1		-
ta Source: G	ienMAPP 2.0											_						_
C				_		_	100					_			~			
£	Expression da	ita import wiz	ard												~			
Cł	noose data d	delimiter																
	🔘 tab	space													- 1			
	-														- 1			
	comma	() other																
	semicolon																	
	-																	
		1	102 2															
	A	В	С															
	GeneID	SystemCode	Fold													Ь.		
	1554835_a_at	Х	9.034496114											E				
	220979_s_at	х	36.52279078												8	2		
	217787_s_at	х	4.579185826															
	222212_s_at	х	-3.774002289															
	236496_at	х	-13.34692887															
	216010_x_at	х	2.853632572													Ь.		
	210073_at	Х	10.05501103														SAH3	
	209420_s_at	х	-2.040256524													HE.	РСНА	
	218421 at	v	3 144085404															_
					-						1	6						
					Ба	ICK		$\overline{}$	Next				× C	ancei				
			,			_		_	-	_	_	-	_	_		<u> </u>		JGT
			<		CERT	1								L L	CERT			
				٦		1								1	ПТ	-	1	licac
	B	4GALT6							+						III 7			

Select appropiate column identifiers used:

From 'Select primary identifier column' -> GeneID.

From 'Select a column to specify system code' -> SystemCode.

DenovoSphingoMetab_U95_supp File_Edit_Data_View_Help	olement.gpml	- PathVisio 2.0.	5	
Zoom:	75%	- Gene MET La	₩∃•□○ヽ冫⊣	
Searce: GenMAPP 2.0 Expression data import wiz Choose column types Select primary identifier column ③ Select a column to specify ○ Use the same system code	ard system code e for all rows		GeneID SystemCode	•
A 1 GeneID 2 1554835_a_at 3 220979_s_at 4 217787_s_at 5 222212_s_at 5 236496_at 7 216010_x_at 3 210073_at	B SystemCode X X X X X X X X X X X X X X X	C Fold 9.034496114 36.52279078 4.579185826 -3.774002289 -13.34692887 2.853632572 10.05501103		
	~	CERT	k Next	

Click Next

Click Finish.

Pathvisio expression file (.pgex) is created from the excel file (.csv) and is used in the next step.

4) The Created Expression File is used to Visualize Data witin Pathvisio. To Visualize Expression Values:

From the menu select Data -> 'Select Expression Dataset' (choose the .pgex file)

Select Data -> 'Visualization Options'

From 'Visualization' -> Auto-generated.

Select 'Expression as Color'.

To modify color gradient: Select the drop-down menu in ' Color Set' -> 'New'

🍰 DenovoSphingoMetab_U95_supplement.gpml - PathVisio 2.0.5	
File Edit Data View Help	
ta Source: GenMAPP 2.0	
Visualization options	1
Expression as numerical value: Display a numerical value next to a DataNode	
Expression as color: Color DataNodes by their expression value	
Basic Advanced	
	C16:1-al
▼ Fold	So1P
	SGPL1
	PPAP2A SPHK1
	SGPP2 SPHK2
	(So)
	ASAH3 ASAH3 ASAH3
Color set: -5.0 5.0 - 7 -	ASAH2 PCHA
Text label: Draws a label	Dropdown
Display: Text label Identifier Appearance	select add
Ok	
HLacce SMS1 SMase1	SMPD1 SMS1 CER
	SMPD3 SMS2

In the Edit color set dialog box, Select 'Gradient' and specify values i.e. -5 (min) to $5.0 \text{ (max)} \rightarrow \text{Select 'OK'}$.

ω	5.0	(IIIax)	/	Jelect	UK.	

🛃 DenovoSphingoMetab_U95_sup	oplement.gpml - PathVisio 2.0	.5		
File Edit Data View Help				
🔥 🧀 🛄 🐚 👘 💋 Zoom	Edit Color Set		シ⊣⊷ッ₽₽	
Visualization opti Visualization auto-gen	Gradient:			→
Expression as n	Rules: Color	Rule		
Basic A				
⊠ Fold				
	Rule logic:			
Color set:	OR = < >			
Text label: Draw	<= >= <>			
Display: Text	Rule logic OK	Color		
	Add rule		Remove rule	
Pri.acce		_	Cancel	Ok

To color the map using rule, refer to the Pathvisio user tutorial at <u>www.pathvisio.org</u>.

Upon completion the map should be colored according to the selected criteria.

Importing Metabolite Changes as nodes in pathway maps:

1) Add metabolite differences to template file.

Open the template file using microsoft excel and fill in the available fold change values (the third column). (Metabolite Template)

Leave the unkown values as '1' and delete the column (last) listing the metabolite annotations.

For new metabolites not included in the template make sure to assign the objects the same ID (name) as the GeneID.

2) Copy and paste the formatted template into the gene expression file fold change file.

Select the first three columns of the template file and paste them at the bottom of the pathvisio

gene expression file (previously formated .csv file).

Save the pathvisio expression file as a new .csv file and follow the instruction as

previously described for visulization of gene expression values (Step 4-*Importing Gene Expression Values*).

Preparation of Expression Datasets from Raw Microarray Data File

Steps 1-4 describe the process involved in preparation of pathvisio espression file from affymetrix .CEL file obtained from published datasets or in house studies. To prepare

expression files from previously normalized datasets obtained as text or .xls files, skip to Sphingolipid Gene Extraction

1) Expression Datasets from Major Repositories can be used within Pathvisio. To Obtain

Public Gene Expression Datasets, Search:

<u>NCBI GEO</u> (Note: Download http) <u>ArrayExpress</u> <u>Oncomine</u> (Note: Free for academic use)

Perform a keyword search for the appropriate gene expression dataset in NCBI GEO

either with disease/cancer type or the experiemnt ID provided in a publication. Download the apprpriate .CEL file (affymetrix experiments) or the GDS file for other platforms or cDNA array datasets.

S NCBI	Gene Expression Omnibus	
HOME SEARCH SITE MAP	Handout NAR 2006 Paper NAR 2002 Paper	FAQ MIAME Email GEO
Gene Expression repository supportin online resource for g GEO navigation	Omnibus: a gene expression/molecular abundance ng MIAME compliant data submissions, and a curated, gene expression data browsing, query and retrieval.	Public data GPL Platforms 4984 GSM Samples 248731 GSE Series 9650 Total 263365
QUERY	DataSets ovarian cancer GO Gene profiles GO GEO accession GO GEO BLAST DataSets Platforms	Site contents Documentation Overview FAQ Submission guide Linking & citing Journal citations Programmatic access DataSet clusters GEO announce list Data disclaimer
BROWSE	GEO accessions Samples Series	GEO staff Query & Browse @ Repository browser Submitter contacts SAGEmap
SUBMIT	Direct deposit / update Create new account Web deposit / update	FTP site GEO Profiles GEO DataSets Deposit & Update Direct deposit Web deposit New account

2) Data Obtained from Affymatrix Chips Must be Normalized Before Importing to Pathvisio

To Normalize Raw Gene Expression files:

Unzip/Extract and Store Affymatrix .CEL file

Download <u>Affymatrix Gene Expression Console</u> to normalize Affymatrix expression values:

Create free user account (Note: Compatible with PC only)

Download Library file for Affymatrix chip: From the File menu -> "Download library files..."

S E	xpre	ssion Co	onsole				
File	Edit	Report	Graph	Analysis	Export	Window	Help
Ne	ew Stu	ıdy			Ctrl+N		-
O	pen St	udy			Ctrl+0	1	
C	ose St	udy					
Ac	dd to S	Study				\rightarrow	
Su	ımmar	ize Study					
Sa	ave St	udy			Ctrl+S		
ZI	P Stuc	ły					
Ur	nZIP S	tudy					
Of ion Co	pen Sa nsole	ample/Arra	ay Attrib	ute File	Ctrl+Shi	ft+0	
O; ion Co eport 2 S	pen Sansole Graph	ample/Arra Analysis E <> :000 ibrary Fik	ay Attrib ×port Win ill W ~	ute File dow Help ← ■ 12×12×	Ctrl+Shi	ft+0	
Of on Co sport 2 Select 1 Select 1	pen Sa nsole Graph 2 74 tAffx L the librar coli_ASv	Analysis E Analysis E Analysis E ibrary File y files to dow 2	ay Attrib ×port Win ill W ~ es micad	ute File dow Help ← ■- 🔤	Ctrl+Shi	ft+0	
Oport	pen Sa nsole Graph 2 7 tAffx L the librar coll_ASv en Flex enomeW	Analysis E Analysis E ibrary Fill y files to dow 2 hideSNP_5 hideSNP_6	ay Attrib	ute File dow Help ← ■- bas	Ctrl+Shi	ft+0	
Or port Select t Ga Ga Ht Ht	pen Sa nsole Graph 2 2 2 tAffx L the librar coll_ASv en Flex enomeW c_G110 G_U95A S_U95A	Analysis E Analysis E ibrary Fill y files to dow 2 MdeSNP_5 MdeSNP_6 v2	ay Attrib ×port Win ill & ~ es micad	ute File dow Help ← ■• kx	Ctrl+Shi	ft+0	
Or Co sport Select Ga Ga Ha Ha Ha	Den So rsole Graph a a CAFFX L the librar coli_ASv en Flex enome W C_G1100 G_U95A G_U95C G_U95C G_U95C	Analysis E Analysis E iltrary Fill y files to dow 2 fideSNP_5 fideSNP_6 v2	ay Attrib xport Win itte W ~ es inload	ute File dow Help ← ■・ ks	Ctrl+Shi	ft+0	
	Cansole Graph Ca	Analysis E Analysis E ibrary Fill y files to dow 2 hideSNP_5 hideSNP_5 w2 Plus 2	ay Attrib xport Win itte W - es minoad	ute File dow Holp C I - Les	Ctrl+Shi	ft+0	
	pen Sa nsole Graph Composition Compositi	Analysis E Analysis E alteracy Fill y files to dow 2 hdeSNP_5 hdeSNP_6 v2 Plus 2 Plus 2	ay Attrib xport Win itte W = mload	ute File dow Help C C C C C C C C C C C C C C C C C C C	Ctrl+Shi	ft+0	
	C_G100 Graph CAffx L the librar chart L the librar chart L the librar chart L the librar chart L the librar chart L the librar chart L the librar	Analysis E Analysis E ibrary Fill y files to dow 2 hdeSNP_5 hdeSNP_5 hdeSNP_6 x2 2 133_Plue_Pf	ay Attrib xport Win all & 	ute File dow Help C III - Las	Ctrl+Shi	ft+0	
	Den Sa Graph Gall Graph Graph </td <td>Analysis E Analysis E → iff iff iff iff iff iff iff iff iff if</td> <td>ay Attrib xport Win ==E % - cs milead</td> <td>ute File dow Help ← ■ bas installed</td> <td>Ctrl+Shi</td> <td>ft+0</td> <td></td>	Analysis E Analysis E → iff iff iff iff iff iff iff iff iff if	ay Attrib xport Win ==E % - cs milead	ute File dow Help ← ■ bas installed	Ctrl+Shi	ft+0	

Create new study to analyze CEL files: From File menu -> "New Study"

Expression	Console				
File Edit Repo	rt Graph	Analysis	Export	Window	Help
New Study			Ctrl+N		- 24-
Open Study Close Study			Ctrl+O		
Add to Study				+	
Summarize Stu	dy				
Save Study			Ctrl+S		
ZIP Study					
UnZIP Study					
Open Sample//	Array Attrib	ute File	Ctrl+Shi	ft+0	

Add extracted .CEL files from data set -> Add Intensity Files button: Add all files to be analyzed.

8	Expre	ssion Co	onsole				
File	Edit	Report	Graph	Analysis	Export	Window	Help
	New Stu	ıdy			Ctrl+N		- <u>ba</u> -
	Open St Close St	tudy tudy			Ctrl+O		
	Add to Summar	Study ize Study				+	
	Save St ZIP Stud	udy dy			Ctrl+S		
	UnZIP S	tudy					
	Open Sa	ample/Arr	ay Attrib	ute File	Ctrl+Shi	ft+0	

Analyze Selected File:

Click "Run Analysis" button and Select appropriate 3' Expression Array (MAS5, RMA, or PLIER)

as described	in study
--------------	----------

Note: If error message appears, select 'ok'

Affymatrix chip has been normalized and dataset is ready to export to external file

3) Results from Affymatrix Data Normalization can be Exported to an External File (.cvs)

used by Pathvisio. In Affymatrix Gene Expression Console:

Download Gene Annotation file corresponding to Affymatrix chip used: From File Menu -> "Download Annotation Files..."

Select appropriate chip and Download

Merge Annotation file with expression results:

From the Edit menu -> "Create Annotation Merge File" -> "Create Affymatrix 3' Expression Merge File"

From drop-list, Select appropriate annotation file

Select annotations to be included in results report and Save

Export Results to Comma Separated Value (.CSV) File:

From the Export Menu-> "Export Probe Set Results (pivot table) with Annotations to TXT''

"Annotation Selection Window" Appears, Browse for created Annotation File

4) .CSV File has been created for Pathvisio

Extraction of gene expression values pertinent to the sphingolipid biosynthesis pathway

Download the script for extraction of expression values corresponding to probes specific to

the sphingolipid biosysnthesis pathway and save it as a perl (.pl) file.

Perl script to extract expression values

The list of gene ID's or their preselected probes for affymetrix HG-U133 Plus2 or HG-U95 chipset can be obtained from the link below.

GENE ID List Affy HG-U133 Plus2 Affy HG-U95

On windows PC install the Activeperl package from <u>www.Activestate.com</u>. (Perl is already installed on Mac OS in the X-terminal). Copy and paste the above script into a text editor (notepad) and save it as 'genefilter.pl' in a separate folder. Next copy and paste the list of gene IDs and probe IDs in another separate text file and save them as 'shingogene.txt' or 'sphingoprobe.txt' in the same folder as the Perl script. Save the normalized microarray dataset with gene expression values and gene ID (or affymetrix probe IDs) in a tab delineated text file in the folder along with the gene/probe list and the Perl script files. To filter the sphingolipid related gene expression values from all the microarray gene probes run the Perl script on the command line (as shown in the figure below for windows PC).

`c:\perl> perl genefilter.pl microarrayfile.txt sphingogene.txt >
microarraysphingo.txt'

The script generates an output text file 'microarraysphingo.txt' with the selected sphingolipid

gene expression values, which is used to prepare pathvisio input dataset file.

Formatting the expression values into a expression file

Gene expression data for sphingolipid specific genes extracted with the perl Script should be formatted into a pathvisio input file with three essential columns and saved as a comma separated file (.csv).

An example is given below

GeneID SystemCode Fold 1552833_at X -1.143967291 1552903_at X 1.010328449 1552965_a_at X 1.422851697 1553046_s_at X 1.220136212 1553257_at X 1.113669687 1553727_at X 4.407868628 1553959_a_at X 1.83540546 1554053_at X -2.338778491 1554253_a_at X 1.068452133 1554383_a_at X 1.139011527 1554835_a_at X 2.045004684 1555123_at X 2.645276048 1555171_at X -1.123596112 1555419_a_at X -2.284137975

GeneID - is the gene identifier or probe ID SystemCode - type of gene identifier Fold – the calculated fold change for the specific gene probe.

Further information about the tile format can be obtained from <u>www.pathvisio.org</u>.

The file can be used to prepare pathvisio expression dataset as described in the previous section.

Last modified on 5/15/08 Disclaimer: SphinGOMAP[©] has been created using information from published literature and diverse other sources, therefore, the creators are unable to ensure the accuracy of, nor assume responsibility for, all of the information it contains. SphinGOMAP[©] is subject to change based on new findings and user input.

Supplementary Figure 1 for

A simple method for visualization of sphingolipid and glycosphingolipid pathway transcriptomic data to predict metabolomic differences: Application to cancer

Amin A. Momin^a, Hyejung Park^a, Brent J. Portz^a, Christopher A. Haynes^a,

Rebecca L. Shaner^b, Samuel L. Kelly^a, I. King Jordan^a and Alfred H. Merrill, Jr.* ^{a,b}

^aSchool of Biology, ^bSchool of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA

Legend for supplementary Fig 1. Early steps of sphingolipids biosynthesis The pathway begins with the condensation of serine and palmitoyl-CoA by serine palmitoyltransferase (SPTLC) to produce 3-ketosphinganine (3KSa), which is reduced (by 3KSa reductase, 3KSR) to sphinganine (Sa). Dihydroceramide (DHCer) synthases (CerS 1-6) N-acylate Sa with different fatty acyl-CoA (R') to produce DHCers, which are converted to ceramides (Cer) or Phyto-Cer by DHCer desaturases (DES1,2). Substitution of the 1-OH with different head groups (R") produces Cer 1-phosphate (Cer1P by Cer kinase, CERK), sphingomyelin (SM by SM synthase, SMS1,2), galactosylceramide (GalCer by GalCer synthase, UGT8) and glucosylceramide (GluCer by GluCer synthase, UGCG), which can be further metabolized to sulfatide (ST by ST transferase, GAL3ST1) and lactosylceramide (LacCer by LacCer synthase, B4GALT6), respectively. CERT is a transporter of Cer from the ER to Golgi and is thought to play a role in the synthesis of SM, Cer1P and GluCer. These headgroup modifications are shown for Cer in the area circumscribed by a dashed line (complex sphingolipids) and also pertain to DHCer, Phyto-Cer and other backbones. Also shown is the catabolism of Cer to sphingosine (So) (and analogous DHCer to Sa) by ceramidase (ASAH1-3), phosphorylation by So (Sa) kinases (SPHK1,2) to So 1-phosphate (S1P) (and Sa to Sa1P), and cleavage by S1P lyase (SGPL1) to ethanolamine phosphate (EP) and hexadecanal (C16:0al for Sa1P) and hexadecenal (C16:1al for S1P). The lower panel illustrates the synthesis of the precursor fatty acyl-CoA by a combination of fatty acid elongases (ELOVL 1-7) and stearoyl CoA desaturase (SCD), and their utilization for the Nacylation of sphingoid bases by different CerS isoforms (CerS1-7).

Supplemental Fig. 1

Supplementary Figure 2 for

A method for visualization of "omic" datasets for sphingolipid metabolism to predict potentially interesting differences

Amin A. Momin^a, Hyejung Park^a, Brent J. Portz^a, Christopher A. Haynes^a, Rebecca L. Shaner^b, Samuel L. Kelly^a, I. King Jordan^a and Alfred H. Merrill, Jr^{* a,b} ^aSchool of Biology, ^bSchool of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA

Legend for supplementary Fig 2. Comprehensive illustration of transcription and metabolite changes in backbone sphingolipids biosynthesis between MCF7 and MDA-MB-231 cells using modified KEGG pathway maps using Pathvisio v2. The figure depicts sphingolipid genes (indicated as rectangles) that participate in the biosynthesis of backbone sphingolipids (including dihydro and phyto sphingolipids), along with corresponding metabolites (depicted as circles).

Supplementary Figure 2A. Sphingolipid biosynthesis begins with the condensation of serine and palmitoyl-CoA to produce 3-ketosphinganine (3KSR), sphinganine (Sa), sphinganine 1-phosphate(Sa1P), dihydroceramide (DHCer), phytoceramides (phyto Cer), ceramides (Cer), ceramide 1-phosphate (CerP), sphingomyelin (SM), galactosylceramide (GalCer), sulfatide (ST), glucosylceramide (GluCer) and lactosylcermide (LacCer). The metabolites with 'DH' and 'phyto' possess a Sa and phyto-Sa base. Also shown is the catabolism of Cer to sphingosine (So), sphingosine 1-phsphate (So1P), ethanolamine phosphate (EP), hexadecanal (C16:0al) and hexadecenal (C16:1al). The layout of the modified pathway maps is based on KEGG (Kyoto Encyclopedia of Genes and Genomes, map00600) pathway diagram (1), using Pathvisio v2 (2) . The shades of the rectangles and circles represents the degree of up and down regulation as indicated by the color scale, were prepared using metabolite data from the current study and mRNA abundance measurement from the NCI60 study (3), and visualized on pathway maps by Pathvisio v2 (2). References given in the legend for Fig. 2B.

Supplement Fig 2B. Depiction of genes and metabolites differences in complex sphingolipids metabolism between MCF7 and MDA-MB-231 cells using modified KEGG pathway maps using Pathvisio v2. The upper panel shows the metabolism of LacCer to globoseries glycolipids; ceramidetrihexoside (Gb3), globoside (Gb4), Forssman and para-forssman antigen, stage specific embryonic antigen-3 (SSEA-3), Globo-H antigen, Type IV A and B antigens, stage specific embryonic antigen-4 (SSEA-4) and disialyl-Gb5. The lower panelillustrates ganglioside biosynthesis that results in the formation of asilo-ganglioside (GA2 and GA1), monosialyl-ganglioside (GM3, GM2, GM1), disialyl-ganglioside (GD3, GD2, GD1 and O-acetyl GD3), trisialyl-ganglioside (GT3, GT2, GT1 and O-acetyl GT3) and more complex GQ1 and GP1. Structural isomers belonging to A, B or C series are indicated with an 'a', 'b' and 'c'. The layout of the modified pathway maps is based on KEGG (Kyoto Encyclopedia of Genes and Genomes, map00603 and map00604) pathway diagram (1), which were prepared using Pathvisio v2 (2). For this figure gene expression ratios between MCF7 and MDA-MB-231 cells were compared using data from a previous study (3), and visualized on pathway maps by Pathvisio v2. Metabolic data for GSL was obtained from a previous study (4, 5).

1. Kanehisa, M., and S. Goto. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27-30.

2. van Iersel, M. P., T. Kelder, A. R. Pico, K. Hanspers, S. Coort, B. R. Conklin, and C. Evelo. 2008. Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 9: 399.

3. Shankavaram, U. T., W. C. Reinhold, S. Nishizuka, S. Major, D. Morita, K. K. Chary, M. A. Reimers, U. Scherf, A. Kahn, D. Dolginow, J. Cossman, E. P. Kaldjian, D. A. Scudiero, E. Petricoin, L. Liotta, J. K. Lee, and J. N. Weinstein. 2007. Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol Cancer Ther 6: 820-832.

4. Schrump, D. S., K. Furukawa, H. Yamaguchi, K. O. Lloyd, and L. J. Old. 1988. Recognition of galactosylgloboside by monoclonal antibodies derived from patients with primary lung cancer. Proc Natl Acad Sci U S A 85: 4441-4445.

5. Nohara, K., F. Wang, and S. Spiegel. 1998. Glycosphingolipid composition of MDA-MB-231 and MCF-7 human breast cancer cell lines. Breast Cancer Res Treat 48: 149-157.

Supplement #3

for

A simple method for visualization of sphingolipid and glycosphingolipid pathway transcriptomic data to predict metabolomic differences: Application to cancer

Amin A. Momin^a, Hyejung Park^a, Brent J. Portz^a, Christopher A. Haynes^a,

Rebecca L. Shaner^b, Samuel L. Kelly^a, I. King Jordan^a and Alfred H. Merrill, Jr.* ^{a,b}

^aSchool of Biology, ^bSchool of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA

Legend. Comparison of the expression of the sphingolipid pathway genes for specific cell lines in the NCI 60-cell line screen versus the average for all (59) cell lines.

Previously published gene expression data (1) for the 59 cancer cells lines in the NCI 60cell line screen (NCI-60) was obtained from Cellminer (2). The raw affymetrix genechip data (U133-A and B) was normalized by the MAS5 algorithm using the Affymetrix gene expression console. Shown is the fold difference between a particular cancer cell line versus the average for all 59 cell lines. Expression changes associated with the sphingolipid biosynthetic pathway were visualized using the updated pathway described in the text maps.

 Shankavaram UT, Reinhold WC, Nishizuka S, et al. Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol Cancer Ther 2007; 6: 820-32.

2. Shankavaram UT, Varma S, Kane D, et al. CellMiner: a relational database and query tool for the NCI-60 cancer cell lines. BMC Genomics 2009; 10: 277.

Supplement 3. Sphingolipid backbone biosynthesis pathway maps for NCI60 cell lines. The heat maps were made by dividing the gene expression value for the line of interest by the average for all of the cell lines of the NCI60 cell line screen.

Tumor:	Cell line:	Page:
Leukemia (LE)	CCRF_CEM	1
	HL_60	1
	MOLT_4	2
	RPMI_8226	2
	SR	3
	K_562	3
Breast (BR)	MCF7	4
	MDA_MB_231	4
	HS578T	5
	T47D	5
Glioma (CNS)	SF_268	6
	SF_295	6
	SF_539	7
	SNB_19	7
	SNB_75	8
	U251	8
Colon (CO)	COLO205	9
	HCC_2998	9
	HCT_116	10
	HCT_15	10
	HT29	11
	KM12	11
	SW_620	12
Renal (RE)	786_0	12
	A498	13
	BT_549	13
	ACHN	14
	CAKI_1	14
	 RXF_393	15
	SN12C	15
	TK_10	16
	UO_31	16

Tumor:	Cell line:	Page:
Lung (LU)	A549	17
	EKVX	17
	HOP_62	18
	HOP_92	18
	NCI_H226	19
	NCI_H322M	19
	NCI_H460	20
	NCI_H522	20
Ovarian (OV)	IGROV1	21
	NCI_ADR_RES	21
	OVCAR_3	22
	OVCAR_4	22
	OVCAR_5	23
	OVCAR_8	23
	SK_OV_3	24
Prostate (PR)	PC_3	24
	DU_145	25
Melanoma (ME)	LOXIMVI	25
	MALME_3M	26
	M14	26
	SK_MEL_2	27
	SK_MEL_28	27
	SK_MEL_5	28
	UACC_257	28
	UACC_62	29
	MDA_MB_435	29
	MDA_N	30
	1	

Sf 4: RPMI_8226 2

Sf 5: SR

Sf 8: MDA_MB_231

Sf 10: T47D

Sf 14: SNB_19

Sf 16: U251

Sf 21: HT29

Sf 22: KM12

Sf 26: BT_549

Sf 27: ACHN

14

Sf 30: SN12C

Sf 31: TK_10

Sf 32: UO_31

Sf 34: EKVX

Sf 36: HOP_92

Sf 39: NCI_H460

20

Sf 43: OVCAR_3

Sf 44: OVCAR_4

Sf 46: OVCAR_8

Sf 48: PC_3

Sf 49: DU_145

Sf 51: MALME_3M

Sf 52: M14

Sf 53: SK_MEL_2

Sf 54: SK_MEL_28

Sf 56: UACC_257

Sf 58: MDA_MB_435

