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Abstract

Cystic fibrosis (CF) is the most common genetic disease among Caucasians, and accordingly the cystic fibrosis
transmembrane conductance regulator (CFTR) protein has perhaps the best characterized disease mutation spectrum with
more than 1,500 causative mutations having been identified. In this study, we took advantage of that wealth of mutational
information in an effort to relate site-specific evolutionary parameters with the propensity and severity of CFTR disease-
causing mutations. To do this, we devised a scoring scheme for known CFTR disease-causing mutations based on the
Grantham amino acid chemical difference matrix. CFTR site-specific evolutionary constraint values were then computed for
seven different evolutionary metrics across a range of increasing evolutionary depths. The CFTR mutational scores and the
various site-specific evolutionary constraint values were compared in order to evaluate which evolutionary measures best
reflect the disease-causing mutation spectrum. Site-specific evolutionary constraint values from the widely used
comparative method PolyPhen2 show the best correlation with the CFTR mutation score spectrum, whereas more
straightforward conservation based measures (ConSurf and ScoreCons) show the greatest ability to predict individual CFTR
disease-causing mutations. While far greater than could be expected by chance alone, the fraction of the variability in
mutation scores explained by the PolyPhen2 metric (3.6%), along with the best set of paired sensitivity (58%) and specificity
(60%) values for the prediction of disease-causing residues, were marginal. These data indicate that evolutionary constraint
levels are informative but far from determinant with respect to disease-causing mutations in CFTR. Nevertheless, this work
shows that, when combined with additional lines of evidence, information on site-specific evolutionary conservation can
and should be used to guide site-directed mutagenesis experiments by more narrowly defining the set of target residues,
resulting in a potential savings of both time and money.
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Introduction

Cystic fibrosis (CF) is a recessive genetic disease that is caused by

mutations to the gene encoding the cystic fibrosis transmembrane

conductance regulator (CFTR) protein [1]. The CFTR protein

serves as a channel that regulates the transport of chloride and

sodium ions across cell membranes in epithelial tissues. Abnormal

ion transport caused by defective (mutated) CFTR channels leads

to the accumulation of viscous mucus, particularly in the lungs,

resulting in difficulties in breathing, poor growth, airway and sinus

infections, and infertility, among other symptoms.

CF is the most common hereditary disease among Caucasians,

with ,1 out of 29 individuals of European descent carriers of a CF

causing allele [2]. Owing to the severity of this genetic disease, and

to its frequency of occurrence, the CFTR gene has been the

subject of an intense research focus for years. These efforts have

led to the accumulation of a large collection of .1,500 identified

disease-causing mutations in the CFTR gene, which is stored and

disseminated by the Cystic Fibrosis Mutation Database (http://

www.genet.sickkids.on.ca/). As such, CFTR has one of the best

characterized spectra of disease-causing mutations for any human

gene.

For this study, we were interested in relating the mutation

spectrum of CFTR to its site-specific evolutionary rate profile. The

rationale underlying this investigation was the notion that

evolutionary information can be used to guide inferences about

function. For example, in the case of CFTR or other disease

related genes, one may be able to employ evolutionary informa-

tion to predict which residues are most likely to be mutated in

cases of disease. In fact, evolutionary inferences are already widely

employed to inform studies of structure and function in this way

[3,4,5,6,7].
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The most straightforward approach to this problem rests on the

assumption that functionally important residues will be subject to

greater selective constraint and thus less likely to change over time

[8]. According to this rationale, disease-causing mutations are

most likely to correspond to evolutionarily conserved positions in a

gene (protein) sequence due to their functional importance. This

assumption has been confirmed in numerous comparative studies

of human disease genes [9,10,11,12]. Nevertheless, there are

conflicting results suggesting that disease genes can evolve under

less selective constraint than non-disease genes [13]. This may be

attributable to the fact that disease genes actually evolve under

moderate selective constraint based on phenotypes that are

intermediate in severity between those caused by lethal mutations

and those caused by mutations with little or no effect [13].

Consistent with this idea, some sets of disease-causing mutations

have been shown to map to sites that are moderately, as opposed

to fully, conserved over evolutionary time [14]. Even more striking

is the fact that mutated residues that are disease-causing in human

have been shown to represent the wild type state in the same

proteins from related species because of compensatory changes at

other sites in the same protein [15,16]. Considered together, these

conflicting results suggest that the precise nature of the relationship

between evolutionary rates and disease-causing mutations is

currently unclear.

In this study, we addressed two specific questions with respect to

this relationship as it pertains to the CFTR gene: 1) what measure

of site-specific evolution best reflects the CFTR mutation

spectrum, and 2) how much sequence variation should be included

to maximize the correlation between site-specific evolution and

mutation in CFTR. In addition to providing information on the

relationship between mutation and evolution in CFTR, we hope

that answers to these questions can also help investigators make

better use of evolutionary information in their own experimental

design and interpretation.

Results and Discussion

Mutation Spectrum of CFTR
In order to define the mutation spectrum of the CFTR gene,

previously characterized mutations were taken from the Cystic

Fibrosis Mutation Database (http://www.genet.sickkids.on.ca/)

(Figure 1A). The vast majority of these mutations are thought to be

disease-causing and are primarily related to cystic fibrosis along

with a minority of mutations that cause congenital absence of the

vas deferens (CBAVD) but no known pulmonary defect as would

be associated with classic CF. Our analysis of disease related

CFTR mutations was limited to exonic sequences and non-

synonymous mutations in order to facilitate comparisons with

evolutionary parameters, which are computed using cross-species

comparisons. Intronic sequences are not sufficiently conserved

over time to allow for accurate comparisons between more

distantly related vertebrate species, and only information on non-

synonymous coding sequence mutations, which change the

encoded amino acid sequence, can be compared with evolutionary

methods that utilize protein sequence comparisons. As of

December 2011, a total of 1,404 individual CFTR exonic

mutations, covering 670 out of the 1,480 CFTR codons, were

available for analysis.

CFTR exonic disease-causing mutations are broadly distributed

across the protein coding sequence and map to the coding regions

for all five of the known CFTR protein domains: the two

transmembrane domains (TMDs), the two nucleotide binding

domains (NBDs) and the regulatory (R) domain (Figure 2).

Nevertheless, there are significant differences in the average

number of mutations per site for the domains. The 59 NBD1

domain coding sequence has the highest number of mutations per

site, and the R domain region has the fewest mutations per site. A

similar bias of disease-causing mutations in the NBD1 region has

previously been observed [17]. This may reflect differences in the

functional relevance of the domains as well as their structural

constraints. The NBD domains encode enzymatic activity, the

hydrolysis of ATP, and are highly structured, whereas the R

domain is non-enzymatic and unstructured [18,19]. Thus,

mutations to the NBD1 coding region may be more prone to

cause disease than mutations to the R domain region. There may

also be an evolutionary dimension to this observation, and indeed

features of structure/function and evolution are clearly not

mutually exclusive. The NBDs are conserved between CFTR

proteins and are found in related ABC transporters, whereas the R

domain is specific to CFTR and not found in other ABC

transporters. Again, this may point to a lower tolerance for

mutations in NBD coding regions and the corresponding excess of

observed disease-causing mutations in the NBD1 region. Consis-

tent with this idea, there is a strong positive correlation between

the prevalence of disease-causing mutations among the CFTR

domains and their levels of evolutionary constraint (Figure 3). The

relationship between the CFTR mutation spectrum and the

evolution of the gene will be explored in greater depth in the rest

of the manuscript. There also appears to be a bias for mutations in

the 59 end of the CFTR gene with both TMD1 and NBD1

showing an excess of disease-causing mutations per site relative to

all three downstream domains, although the reasons for this excess

of 59 mutations are less clear.

A scoring scheme for the CFTR exonic disease-causing

mutations analyzed here was implemented to allow for direct

comparisons between the CFTR mutation spectrum and CFTR

site-specific evolutionary parameters (Figure 1A). Scores were

calculated in units of individual codons and are based on the

amino acid changes entailed by the observed disease-causing

mutations. These amino acid changes are scored using the

Grantham chemical difference matrix, which measures the mean

chemical distance between residues for three different properties

[20]. The Grantham matrix was chosen for the CFTR mutation

scoring scheme based on previous observations showing that this

measure is significantly correlated with the clinical likelihood of

a number of different human diseases [21]. Scores were scaled

from 0 to 1 under this scheme; relatively greater deviations from

the wild-type CFTR sequence are given a higher score, and

codons with no mutations are given a score of 0. Details of this

CFTR mutation spectrum scoring scheme can be found in the

Materials and Methods section. The distribution of CFTR

mutation scores is peaked at zero, i.e. codons with no mutations

in the Cystic Fibrosis Mutation Database, and has a long tail of

non-zero scores that are approximately normally distributed

(Figure 4A).

Site-specific Evolution of CFTR
The goal of this study was to relate the CFTR mutation

spectrum to the relative evolutionary constraints on the CFTR

sequence. In order to do this, seven different measures of site-

specific evolutionary constraint were computed across four depths

of evolutionary relatedness for CFTR sequences that are found

among vertebrates. Descriptions of each of these evolutionary

parameters, along with conceptual details for how they are

calculated, are provided in Table 1. The seven evolutionary

parameters can be conceptually partitioned into three groups:

conservation, probabilistic, and selection (Table 1). ScoreCons and

ConSurf are measures of site-specific evolutionary conservation

The Disease Mutation Spectrum in CFTR
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based on amino acid sequence comparisons; the Polyphen2, SIFT,

DIVERGE and PhastCons measures form a heterogeneous group

with methods that measure site-specific evolution, or relative

effects of site-specific changes, based on probabilistic analyses of

multiple sequence alignments, and the ratio of non-synonymous

(Ka) to synonymous (Ks) substitution rates (Ka/Ks) is a nucleotide

sequence (codon)-based measure of selective constraint. It should

be noted that since this study compared quantitative levels of site-

specific sequence constraint produced by different evolutionary

methods, we were not able to include methods that produce

qualitative data as output, such as the DETECTER program [4]

that yields lists of potentially tolerated versus intolerated residues at

each position.

Beyond the simple classification scheme for the methods

described above, each of these seven approaches for measuring

site-specific evolutionary rates can be considered to have their own

strengths and weaknesses prior to comparative analysis. For

instance, the conservation based method ScoreCons has the

advantage of being conceptually straightforward, but may be

considered to be overly simplistic since it does not take information

on the phylogenetic relationships between sequences into account

as do the ConSurf and PhastCons methods. PhastCons also has

the advantage of allowing for multiple substitutions per site and

unequal rates of substitution across lineages, whereas the fact that

it was designed for calculating nucleotide diversity may place it at a

disadvantage here compared to methods that are designed for

amino acid sequence comparison. Ka/Ks is also a nucleotide

ba[sed measure and suffers an even greater disadvantage of

saturation of Ks, owing to the rapid accumulation of multiple

substitutions at synonymous sites, for divergent sequence pairs.

Polyphen2 stands out from all of the methods employed here in

that it uses its own custom sequence search and alignment pipeline

and takes into account a number of different aspects of sequence

conservation and structural environment when computing its

score. While the PolyPhen2 alignment protocol provides for

quality control, the quality of the alignments produced can not be

manually verified and/or refined by the user. We provide

additional detail on the discrepancies between the methods along

with their relative strengths and weaknesses in Table S1.

As with the mutation scoring scheme, the scores for six of these

measures of site-specific evolution were scaled to range from 0 to

1, with 0 representing the highest conservation and 1 representing

the maximum variability. Ka/Ks was not scaled in this way since it

naturally takes on values over this range but is unbounded, with a

sparse tail, above the value of 1. Distributions for each of these

site-specific evolutionary scores, at depth 4 with all vertebrate

sequences included, are shown in Figure 4 panels B–H. The

ScoreCons (Figure 4B) and ConsSurf (Figure 4C) distributions

most closely resemble the distribution of CFTR mutation scores

(Figure 4A) with a high peak at 0 and a long tail of non-zero scores

that are approximately normally distributed. The Polyphen2

scores (Figure 4D), while also approximately normal, show by far

the broadest and most uniform distribution across the score range.

Ka/Ks shows the only distribution (Figure 4E) that is best

approximated by a gamma function, and most values are found

closer to 0 (i.e. maximum selective constraint). The PhastCons

distribution (Figure 4F) is extremely bimodal with the highest peak

at 0 (no change) and a smaller peak at 1 (maximum change). SIFT

shows a peaked normal distribution (Figure 4G) with most values

close to the more conserved end of the spectrum, whereas the

DIVERGE distribution (Figure 4H) is bimodal with a peak closer

to the higher end of relative variation.

The relationships among these score distributions were evalu-

ated by performing pairwise correlations between the CFTR site-

specific variation profiles that they generated followed hierarchical

clustering on the resulting correlation coefficients. Pearson

correlation was used to do this in light of the approximately

normal distributions of the scaled and transformed measures

Figure 1. Scheme of the analysis used in this study. (A) Flow chart illustrating the joint analysis of CFTR mutation data from the Cystic Fibrosis
Mutation Database and site-specific evolutionary metrics based on seven different comparative methods. (B) CFTR phylogenetic tree and associated
list of species analyzed indicating the four ascending evolutionary depths used in the study.
doi:10.1371/journal.pone.0042336.g001

Figure 2. Locations of disease-causing mutations along the CFTR protein sequence. The domain architecture of CFTR is shown with TMD-
transmembrane domain, NBD-nucleotide binding domain and R-regulatory domain. The locations of protein residues that are known to be mutated
in CF disease cases are indicated with gray vertical bars below the domain architecture, and the average numbers of mutated residues are shown for
10-residue long sliding windows along the length of the protein.
doi:10.1371/journal.pone.0042336.g002
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evaluated here (Figure 4). The first observation from this analysis is

that the seven measures of site-specific variation evaluated here

can yield substantially distinct site-specific variation profiles

(Figure 5). This is despite the fact that the measures are being

applied to the same CFTR multiple sequence alignment, with the

exception of Polyphen2 which creates its own alignment. The

Pearson correlation coefficients (PCCs) range from 20.33 to 0.86,

and ,30% of the PCC values (6 out of 21) are negative.

DIVERGE in particular appears to be an outlier since it is

significantly negatively correlated with 5 out of 6 of the other

measures that were evaluated. The variability observed for these

pairwise correlations suggests that the different site-specific

variation measures employed here capture different aspects of

the evolutionary process.

The second observation from this analysis is that the different

measures compared tend to group according to the class of

algorithm that they represent (Figure 5). The two conservation

measures (ConSurf and ScoreCons) are grouped most closely,

followed by Ka/Ks which also measures selective constraint and

then the probabilistic methods follow. Polyphen2 and PhastCons

occupy the most intermediate positions on the PCC dendogram.

Relating CFTR Mutation and Evolution
Having established the variability of the different site-specific

evolution measures used here, we then related the CFTR

mutation spectrum to the evolutionary site-specific variation

profiles generated by these different measures (Figure 6 and

Table 2). This was done across a series of increasing evolutionary

depths (1–4), each of which contains more distantly related

species (Figure 1). The shallowest evolutionary depth 1, which

only contained Hominoidea, did not provide enough sequence

variation to yield any information for the comparison with the

CFTR mutation spectrum. Accordingly, only results from depths

2–4 are presented here. The program DIVERGE measures

differences between two user defined clades, and therefore was

only used at the maximum depth 4 to ensure adequate sequence

representation in each clade. Polyphen2 is the only program used

here that conducts its own sequence search and computes its own

multiple sequence alignment. The variation present in the

resulting Polyphen2 alignment is roughly equivalent to depth 4

since it captures a diverse set of CFTR sequences using an

internal BLAST similarity search.

In general, CFTR mutation scores are negatively correlated

with measures of site-specific evolutionary variation. In other

words, CFTR sites that are more conserved are more likely to

cause disease when mutated. This observation is both intuitive and

expected, since functionally important sites are more likely to be

conserved than less important sites. Nevertheless, there are

substantial differences in the results across different evolutionary

depths as well differences in the efficacies of the various

evolutionary measures in terms of correlating with the CFTR

mutation spectrum. Overall, depth 4 yields the best results (i.e. the

strongest correlations with the CFTR mutation spectrum).

However, this is not always the case; SIFT shows the highest

negative correlation with the least overall variation at depth 2.

Use of the program PolyPhen2 provides the strongest correla-

tion with the CFTR mutation spectrum (Figure 6 and Table 2).

This result is consistent with previous comparisons showing that

PolyPhen2 was the best program for predicting the deleterious

effects of non-synonymous protein coding sequence mutations [3].

In fact, this result may not be surprising considering the fact that

the quantitative output from PolyPhen2 is distinct from the other

measures of site-specific evolutionary rates compared here in the

sense that it is actually a probability that any particular mutation is

damaging to the function of the protein, and in this way may

represent a more directly relevant comparison to disease causing

mutations than the other measures. The superior performance of

the Polyphen2 algorithm observed here may also be attributed to

the fact that Polyphen2 incorporates additional functionally

relevant information beyond what can simply be found in a

multiple sequence alignment. For example, Polyphen2 incorpo-

rates structural information vis-à-vis the results of sequence

comparisons it does against the PDB structural database [22]. It

also uses protein domain information from Pfam [23] as well as

information on the nature of the observed nucleotide substitutions.

The next best correlations are obtained when the conservation

measures ConSurf and ScoreCons are used at depth 4, and then

Ka/Ks at depth 4 provides a similar level of correlation to ConSurf

and ScoreCons. While PolyPhen2 provides ,12% better perfor-

mance, in terms of correlating with the mutation spectrum, the

differences between the correlation values provided by PolyPhen2

and the conservation measures are not statistically significant. This

suggests that the conservation per se provides the most reliable

signal for predicting the effects of mutations in the CFTR gene. In

addition, the more available information there is, in terms of

sequence divergence, the better the correlation with mutation

will be.

Effect of Alignment Algorithm Choice and Sequence
Selection

The results reported above are based on the use of a single

multiple alignment algorithm (CLUSTALW) and a relatively

limited set of representative CFTR sequences. We further

evaluated how the choice of the alignment algorithm affects the

quality of the alignment along with the relationship between

CFTR mutation and evolution by comparing results obtained

using four different programs, CLUSTALW [24], ProbCons [25],

MUSCLE [26,27], T-Coffee [28]. These programs were chosen

because they are widely used, considered to be reliable and each

employs a fundamentally different alignment algorithm. Further-

Figure 3. Correlation between evolutionary and mutational
scores for individual CFTR domains. The average ScoreCons per-
site score for each of the five CFTR domains was regressed against the
average mutational per-site score for the domains.
doi:10.1371/journal.pone.0042336.g003
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more, the T-Coffee alignment method was run using the T-Coffee

algorithm alone and in a combined mode that merges results from

multiple programs in an effort to yield a more reliable alignment.

The alignment methods were compared by taking the average

site-specific conservation scores as a quantitative measure for

alignment quality (see http://tcoffee.crg.cat/apps/tcoffee/

do:core). This was first done on the same set of 19 NCBI RefSeq

CFTR amino acid sequences described above for evolutionary

depth 4 (Figure 1). The results of this analysis suggest that

CLUSTALW yields the most reliable multiple sequence alignment

(Figure S1). This result was somewhat unexpected since CLUS-

TALW is the oldest of these methods and sometimes considered to

be obsolete. This result may simply reflect the fact that the CFTR

sequences analyzed here are highly conserved and thus do not

necessitate the use of a more advanced sequence alignment

algorithm, such as T-Coffee which has been shown to perform

better with more distantly related sequences. It may also reflect the

fact that the alignments evaluated here consist of relatively few

sequences; MUSCLE for instance has been shown to perform well

on large sequence sets. The effects of including additional

sequences are considered below. In any case, the differences in

the alignment qualities produced by the different methods, while

statistically significant, are somewhat marginal.

Having evaluated the relative performance of the alignment

algorithms in this way, we also checked to see if the different

alignments produced changed the nature of the relationship

between CFTR mutation and evolution. To do this, we

recomputed the correlations between site-specific evolutionary

constraint measures and mutation scores across the different

alignments where possible. This comparison could not be made for

programs that use their own alignment methods, i.e. PolyPhen2,

PhastCons and Ka/Ks. The relative ranks of the site-specific

evolutionary constraint methods did not change appreciably when

different alignment methods were used (Table S2). The position of

ConSurf changes slightly with respect to the ScoreCons and Ka/Ks

methods, but this was a relatively minor change since these

Figure 4. Probability distributions of the CFTR per-site mutational and evolutionary scores. For the mutational score (A) and each of the
seven evolutionary scores (B–H), observed distributions are shown in gray (20 bins) and red (smoothed distributions). The best fitting theoretical
distributions are shown in green.
doi:10.1371/journal.pone.0042336.g004

Table 1. Site-specific measures of evolutionary constraint.

Parameter Description Class

(1) ScoreCons ScoreCons provides a measure of site-specific evolutionary conservation [30]. The highest score represents the
most conserved position in a protein. The scores provided account for amino acid frequency, utilizes the
stereochemical properties of the amino acids within the substitution matrix and normalizes against the
redundancy in the alignment [31]. ScoreCons uses a type of sum-of-pairs scoring with scores ranging from 0 to 1.

Conservation

(2) ConSurf Given an MSA and the corresponding phylogeny, ConSurf calculates position-specific conservation scores using
the empirical Bayesian or Maximum Likelihood algorithms [32,33]. The scores are normalized, so that the average
score for all residues is 0, and the standard deviation is 1. The conservation scores calculated by ConSurf are
a relative measure of evolutionary conservation at each sequence site of the target chain. The lowest score
represents the most conserved position in a protein. It does not necessarily indicate 100% conservation (e.g. no
mutations at all), but rather indicates that this position is the most conserved in this specific protein calculated
using a specific MSA.

Conservation

(3) PhastCons PhastCons [34] identifies conserved sites based on a statistical model of sequence evolution called
a phylogenetic hidden Markov model. PhastCons considers n species and their phylogeny. It then uses
statistical models of nucleotide substitution that allow for multiple substitutions per site and for unequal
rates of substitution between different pairs of bases. Its output is a probability that each nucleotide
belongs to a conserved element.

Probabilistic

(4) DIVERGE DIVERGE [35] implements a two-step statistical testing for site-specific rate shifts along the input user
tree and thus predicts candidate amino acid residues responsible for functional divergence based on posterior
analysis. Its output is a set of posterior probabilities for specific sites (possibly those responsible for
the functional divergence).

Probabilistic

(5) PolyPhen2 The Polyphen algorithm [3,6] takes as input the query protein sequence and the SNP with its position
which is to be analyzed. Based on an internal pipeline, it then proceeds to calculate the probability that the input
SNP is deleterious for the sequence. The pipeline first performs a BLAST search to retrieve high-scoring
sequence pairs by identity. Using these, it constructs an initial MSA which is refined in the subsequent steps by
performing clustering. From this refined MSA, the algorithm scores a series predefined amino acid residue and
structural characteristics for the input positions and jointly considers these features to calculate the
Naı̈ve Bayes probability that this mutation is damaging.

Probabilistic

(6) SIFT SIFT [5] takes into consideration that changes at well-considered positions tend to be deleterious in nature.
SIFT uses a two-step algorithm in which the first step involves the identification of closely related
sequences and construction of an MSA from these sequences. Once an MSA is obtained, the algorithm calculates
the probability that the given site belongs to the conserved sites of the sequence.

Probabilistic

(7) Ka/Ks Estimation of selective pressures acting at the level DNA coding sequences (CDS) can be determined by
etermined by estimating the ratio of non-synonymous (Ka) to synonymous (Ks) rates of CDS substitution.
An estimate of Ka that is significantly lower than Ks provides evidence for the action of purifying selection
(i.e. evolutionary constraint). To estimate the selective constraint at each codon, the ratio (v) of Ka/Ks was
calculated using the Selecton server [36].

Selection

Conceptual summaries for each of the seven algorithms used to calculate site-specific evolutionary constraint are provided, and the algorithms are classified according
to the general class of approach that they use.
doi:10.1371/journal.pone.0042336.t001
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methods were basically indistinguishable using CLUSTALW.

These findings are consistent with the marginal differences in

alignment quality produced by the different methods (Supporting

Information Figure S1). Nevertheless, in cases where sequences are

more diverged and alignment qualities differ more substantially

than seen here, users may be cautioned that the results could

change more dramatically.

We also evaluated the effect of including additional sequences in

the analysis. We initially used only 19 CFTR sequences from the

NCBI RefSeq database because these sequences are highly

curated, and thus reliable, and also make up a representative set

that evenly spans the phylogenetic diversity at evolutionary depth

4 (Figure 1). However, there are numerous additional CFTR

sequences available including many closely related sequences

along with sequences that result from automated gene model

predictions and thus are likely to be less reliable. We included all

such available sequences together with the 19 NCBI RefSeq

sequences in an expanded set of 192 CFTR sequences, and

compared the performance of this set with respect to both

alignment quality and the correlation between CFTR evolution

and mutation. The expanded set results in the lowest quality

alignment observed (Figure S1) and generally lower correlations

between CFTR site-specific evolutionary rates and mutation

scores (Table S3). Nevertheless, the overall relative performance

of the site-specific evolutionary rate measures did not change

appreciably. Experimentalists should be cautioned again that the

Figure 5. Pairwise correlations between per-site scores and relationships for the seven evolutionary metrics. Individual per-site CFTR
scores were regressed for all pairs of methods. Scatter plots are shown about the diagonal and Pearson correlation coefficients (PCC), along with their
associated P-values, shown below the diagonal. The evolutionary metrics are related using hierarchical clustering of the PCC values.
doi:10.1371/journal.pone.0042336.g005
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robustness of these results to sequence sets of different sizes may be

attributable to the fact that CFTR represents a highly conserved

set of orthologous sequences with a relatively narrow evolutionary

range.

Predicting CFTR Mutations with Evolutionary Data
While the correlations between the CFTR mutation spectrum

and the site-specific evolutionary rates are highly statistically

significant, owing to the large number of CFTR sites analyzed

(n = 1,480), the PCC values are modest at best. The highest

performing evolutionary measure, PolyPhen2, yields a PCC of

20.19, which corresponds to an r2 value of 0.036. In other words,

only 3.6% of the variance in the CFTR mutation score can be

predicted by the variance in PolyPhen2 site-specific evolution

scores. Based on this observation, one must exercise caution when

trying to use evolutionary information to specifically predict which

sites in a gene (protein), such as CFTR, are most likely to be

mutated in disease cases.

To explore this idea further, we attempted to use the site-

specific evolution measures to predict sites that have disease-

causing mutations in CFTR. To do this, CFTR sites were

classified with a simple binary designation as to whether they

contain a disease-causing mutation or not (Figure 7A). Then each

site-specific evolutionary measure was used across a series of

thresholds above (or below) which all sites were predicted as

mutated (or not). This approach allowed for true positives (TP) to

be counted as the number of observed mutated sites above the

evolutionary score threshold, and false positives (FP) were counted

as the number of observed mutated sites below the score threshold.

Similarly, false negatives (FN) were counted as the number of sites

above the threshold not observed to be mutated, and true

negatives (TN) were the number of sites below the threshold not

observed to be mutated. Receiver operating characteristic (ROC)

curves were then plotted to evaluate the trade-off between

sensitivity [(TP/(TP+FN)] and specificity [TN/(FP+TN)] in

predicting mutated sites over different threshold values

(Figure 7B). The ROC curves were also used to identify the site-

specific evolution rate threshold values for each measure that

maximized this trade-off by computing the minimum Euclidean

distance between the ROC curves and the upper left corner of the

plots, which represents a theoretically perfect predictor (i.e.

maximum sensitivity and specificity).

In contrast to the results of the correlation analysis, the

conservation based measures ConSurf, ScoreCons and Ka/Ks

were both extremely close to one-another based on the ROC

curve analysis and also scored the highest with respect to the trade-

off between sensitivity and specificity (Figure 7B and Table 3). In

other words, these methods yielded the best performance in terms

of the prediction of individual disease-causing mutation sites

(Figure 7 and Table 3). However, each of these methods achieved

harmonic means of sensitivity and specificity below 60%. These

results indicate that even the most reliable evolutionary metrics

only perform marginally well in predicting the disease-causing

potential of individual CFTR mutations. Nevertheless, use of this

information, together with additional functional and/or structural

considerations, can help guide mutagenesis experimental ap-

proaches.

Recommendations for Experimentalists
This study was conceived and executed in an attempt to assess

the extent to which evolutionary information can inform

functional studies of human disease genes (proteins). To do this,

we sought to evaluate whether the CFTR disease-causing

mutation spectrum was related to site-specific measures of

evolutionary constraint, and if so, to determine which evolutionary

metrics yielded the best correlations with, or predictions of, CFTR

disease mutations. The hope was that answers to those questions

could provide guidance to experimentalists in terms of how to best

select individual residues, or sets of residues, for functional

interrogation.

The widely used program PolyPhen2 yields the best correlation

values between the CFTR mutation spectrum and site-specific

evolutionary constraint values. This may reflect the fact that

PolyPhen2 uses a wide variety of information sources, when

Figure 6. Pairwise correlations between CFTR mutational scores and scores from seven evolutionary metrics. Mutational scores were
regressed against the various evolutionary scores and the resulting Pearson correlation coefficients (PCC) and P-values are shown. The results for all
evolutionary metrics, except for PolyPhen2 and DIVERGE, are shown for evolutionary depths 2–4. PolyPhen2 employs an intrinsic similarity search to
achieve maximum evolutionary depth, and DIVERGE could only be run at depth 4 (see Table 2).
doi:10.1371/journal.pone.0042336.g006

Table 2. Pairwise correlations between CFTR mutation scores and site-specific evolutionary constraint values.

Depth 2: Primates (5) Depth 3: Mammalia (16) Depth 4: Vertebrata (19)

Parameter PCC P-value PCC P-value PCC P-value

1 PolyPhen2 Not Applicable2 Not Applicable2 20.191 1.44e-13

2 ConSurf 20.014 6.00e-01 20.137 1.31e-07 20.168 8.56e-11

3 ScoreCons 0.038 1.50e-01 0.143 3.40e-08 20.167 9.11e-11

4 KaKs 20.0232 3.70e-01 20.135 1.99e-07 20.165 1.77e-10

5 SIFT 20.159 6.89e-10 20.121 2.82e-06 20.107 3.82e-05

6 PhastCons 20.083 1.31e-03 20.118 5.44e-06 20.105 5.33e-05

7 DIVERGE No Results1 No Results1 0.015 5.62e-01

The CFTR mutational score spectrum was regressed against site-specific evolutionary constraint values for seven different evolutionary metrics across a range of
increasing evolutionary depths (see Figure 6). For each comparison, the Pearson correlation coefficient (PCC) and associated p-value are shown. Evolutionary methods
are ranked according to the best correlations.
1DIVERGE produced all 0 posterior probabilities due to insufficient number of sequences.
2PolyPhen2 requires only single amino acid sequence to do the scoring and hence the depth-level concept nullifies in this case.
doi:10.1371/journal.pone.0042336.t002
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available, and has been continuously refined over several years.

Nevertheless, the differences between the correlation values

yielded by PolyPhen2 versus those of the more straightforward

conservation measures ConSurf and ScoreCons are not statisti-

cally significant. This suggests that conservation itself is the most

important feature to be considered when attempting to measure

the functional impact of individual mutations. Another relevant

take home message from this study is that it is important to include

as much variation as possible, while controlling for alignment

quality, from any individual protein family when attempting to use

evolutionary inferences to inform function.

Consistent with the notion that conservation per se is the most

important aspect of evolution as it relates to function, when the

evolutionary metrics were compared with respect to their ability to

predict individual CFTR sites as disease-causing mutations or non-

mutated in disease, the straight conservation measures performed

the best. These differences in relative performance may reflect the

fact that the correlations reported rely on a continuous mutation

score for all CFTR residues, whereas the disease-causing mutation

prediction is a binary classification that distinguishes sites as being

implicated in CF disease or not. In either case, the fraction of

variability in mutation scores explained by variation in PolyPhen2

scores is low (3.6%), and the sensitivity (58%) and specificity (60%)

values for the prediction of disease-causing residues by ConSurf

were marginal. These data point to the fact that site-specific

evolution constraint levels are not deterministic with respect to the

functional role of any particular residue or position. They may also

reflect, to some extent, the incompleteness of the CFTR disease-

causing mutation spectrum. Thus, experimentalists must use

caution when employing site-specific evolutionary conservation

measures to inform functional studies. Nevertheless, the signal of

the relationships between evolution and mutation observed here is

quite strong and far greater than could be expected by chance

alone. Thus, judicious use of such evolutionary information,

together with additional lines of evidence, should prove to be quite

useful in narrowing down sets of residues to be experimentally

Figure 7. Predictive power for the seven evolutionary metric scores. (A) Scheme of the prediction power analysis. Residues mutated in CFTR
disease cases are shown in red and non-mutated residues are shown in blue. Residues are ranked in descending order according to an evolutionary
conservation metric. A conservation score threshold is chosen; residues above this threshold are predicted to be mutated and those below are
predicted to be non-mutated. This allows for the classification of each residue as a true positive, false negative, false positive or true negative
according to its classification and its location above or below the score threshold. (B) Receiver operating curve (ROC) analysis was used to evaluate
the predictive power of the seven evolutionary metric scores and to maximize the trade-off between sensitivity and specificity. For each evolutionary
metric, the point along the ROC curve that minimizes the Euclidean distance between the coordinates y = observed sensitivity, x = observed 1-
specificity and the perfect predictor coordinate of y = 1, x = 0 is taken as the optimal threshold (indicated with triangles). An example of the minimal
Euclidean distance for the ConSurf method is shown. For the thresholds chosen in that way, sensitivity and specificity are averaged to come up with a
ranked predictor value for each evolutionary metric.
doi:10.1371/journal.pone.0042336.g007
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studied. A reduction in the space of possible residues to be

investigated can in turn result in substantial savings for experi-

mentalists in terms of time, effort, and money.

We conclude here by providing a series of concrete recommen-

dations for experimentalists for how site-specific mutation studies

can be set up to take account of evolutionary information based on

our observations in this study. There are four specific concept

areas that experimentalists should consider when doing so: 1)

sequence database source and selection, 2) evolutionary breadth

and depth of represented sequences, 3) alignment programs and

quality measures, and 4) use of and consensus among several

methods of site-specific evolutionary constraint. Sequence data-

bases are highly redundant and include numerous gene model

predictions and low quality sequences, for instance sequences from

low coverage genome projects, which should be avoided when

possible. The easiest way to do this is to use a curated database

source such as the NCBI RefSeq database, as used here, or the

UniProt database. We also found here that inclusion of numerous

closely related sequences does not provide any added value for the

prediction of sites that are likely to be functionally significant

(Figure S1 and Table S3). Rather, it is more useful to choose a

broadly representative set of sequences that spans the full

evolutionary depth of any given set of orthologs and to whatever

extent possible equally populates the evolutionary lineages across

this depth. There are numerous alignment programs that are

available and the performance of these programs may differ

according to the evolutionary relatedness of the sequences being

analyzed. We recommend the initial use of several different

multiple alignment programs followed by evaluation of the relative

quality of the alignments produced. For example, the T-Coffee

webserver provides for the use of numerous multiple sequence

alignment programs in various combinations along with a tool for

evaluation of alignment quality (http://tcoffee.crg.cat/). In

addition, manual refinement of alignments can be particularly

useful in generating the highest possible quality alignment. Finally,

the results reported here suggest that several methods of site-

specific evolutionary constraint may be of use, particularly

PolyPhen2, ConSurf and ScoreCons. Thus, we would recommend

using all of these methods and choosing sites that score high across

all three as most likely to be functionally significant and thus the

most viable targets for site-specific mutation experiments.

Materials and Methods

Quantifying Mutations in the CFTR Gene
The Cystic Fibrosis Mutation Database (http://www.genet.

sickkids.on.ca/) was mined for clinically characterized CFTR

coding sequence (i.e. exonic) mutations. CFTR coding sequence

mutations were considered with respect to the amino acid changes

they entail relative to the wild-type CFTR protein sequence

(Genbank accession NP_000483.3). For each individual CFTR

codon, all observed non-synonymous (i.e. amino acid altering)

mutations (a, b) were scored based on the severity of the encoded

amino acid change using the Grantham chemical difference

matrix (m). The sum of scores (S) for each codon was then recorded:

Scodon = S
over all substitutions

m(a,b). The codon mutation scores were

scaled from 0 to 1 via normalization with the maximum score (Max

Scodon).

CFTR Site-specific Evolutionary Parameters
CFTR amino acid and nucleotide coding sequences for a

phylogenetically representative set of vertebrate species were taken

from the NCBI Refseq database [29]: Homo sapiens (NP_000483,

NM_000492), Pan troglodytes (NP_001073386, NM_001079917),

Pongo abelii (NP_001162017, NM_001168545), Macaca mulatta

(NP_001028110, NM_001032938), Papio anubis (NP_001106085,

NM_001112615), Equus caballus (NP_001103980,

NM_001110510), Ovis aries (NP_001009781, NM_001009781),

Bos taurus (NP_776443, NM_174018), Sus scrofa (NP_001098420,

NM_001104950), Canis lupus familiaris (NP_001007144,

NM_001007143), Felis catus (NP_001041474, NM_001048009),

Oryctolagus cuniculus (NP_001076185, NM_001082716), Mus mus-

culus (NP_066388, NM_021050), Rattus norvegicus (NP_113694,

NM_031506), Ornithorhynchus anatinus (NP_001229663,

NM_001242734), Gallus gallus (NP_001099136,

NM_001105666), Salmo salar (NP_001117005, NM_001123533),

Takifugu rubripes (NP_001041505, NM_001048040), Danio rerio

(NP_001038348, NM_001044883).

Amino acid and nucleotide multiple sequence alignments were

created using the program ClustalW [24]. The resulting multiple

sequence alignments were evaluated to calculate site-specific

evolutionary constraint levels using six different approaches:

SocreCons, ConSurf, PhastCons, DIVERGE and SIFT (using

the amino acid alignment) as well as Ka/Ks (using the nucleotide

coding sequence alignment). PolyPhen2 used the human CFTR

amino acid sequence as a query in a homology search and created

Table 3. Predictive value of the seven evolutionary metrics for individual disease-causing CFTR mutations.

Evolutionary Constraint Sensitivity Specificity Harmonic Mean
Euclidean Distance from
Perfect Predictor

1 ConSurf 0.581 0.597 0.589 0.581

2 ScoreCons 0.601 0.576 0.588 0.582

3 Ka/Ks 0.57 0.597 0.583 0.590

4 PolyPhen2 0.508 0.623 0.560 0.620

5 PhastCons 0.611 0.494 0.547 0.638

6 DIVERGE 0.728 0.419 0.532 0.641

7 SIFT 0.516 0.541 0.528 0.667

For each evolutionary metric, ROC analysis was used to evaluate the trade-off between sensitivity and specificity over a range of score thresholds, and the optimal
threshold was taken as position of on the curve that minimizes the Euclidean distance from the perfect predictor (see Figure 7 and text). For these thresholds,
evolutionary metrics are ranked according to the harmonic mean between the sensitivity and specificity of predicting individual CFTR residues as disease-causing or
non-mutated.
doi:10.1371/journal.pone.0042336.t003
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its own multiple sequence alignment. Descriptions for each of

these measures, including conceptual information along with some

details of how each is computed, can be found in Table 1.

For the six amino acid based methods, scores were scaled across

the range from 0 to 1. To do this, site-specific evolutionary

parameter scores were normalized with the maximum score.

Scaling of ConSurf in this way necessitated a prior transformation

step in order to make all values positive. To do this, all ConSurf

parameter values were increased by the modulus of the minimum

negative value. For SIFT scores, a transformation of the output

probability values into expectation values was performed by

multiplying the probability values for amino acid pairs with the

corresponding values from the BLOSUM60 amino acid exchange

matrix. Ka/Ks values were not scaled from 0 to 1 owing to the fact

that they already fall into this range with the exception of 3 out of

670 codon values.

For all methods except DIVERGE and Polyphen2, these

procedures were repeated over different evolutionary depths, i.e.

using sets of sequences at different levels of evolutionary

divergence from the human CFTR, as described in the Results

and Discussion section and shown in Figure 1B. DIVERGE site-

specific evolutionary constraint values were computed using the

depth 4 (vertebrate) data set only. DIVERGE was run by splitting

the vertebrate phylogeny at the deepest node separating the fish

from the terrestrial vertebrates, and Type II divergence values

were recorded. PolyPhen2 uses its own sequence similarity search

and creates its own multiple sequence alignment to run, resulting

in an equivalence to depth 4 (i.e. a maximum diversity of CFTR

sequences included in the score calculation).

Statistical Analyses
All statistical analyses were performed using the R package.

Observed mutation and site-specific evolutionary score distribu-

tions were computed using density plots and for 20 discrete bins.

Observed distributions were fit to their nearest theoretical

distribution using maximum likelihood. Pairwise relationships,

and their statistical significance, between the seven sets of site-

specific evolutionary parameter values were evaluated with the

Pearson correlation coefficient. Pearson correlation was also used

to evaluate the pairwise relationships between the mutation scores

and the site-specific evolution parameter values.

Supporting Information

Figure S1 Comparison of multiple sequence alignment
methods. The quality of multiple sequence alignments produced

using different methods was inferred using average per site

conservation scores based on the (A) ScoreCons algorithm (1 being

highly conserved, 0 being highly divergent) or (B) the Core

conservation score from the T-Coffee webserver (http://tcoffee.

crg.cat/apps/tcoffee/do:core). Note that the T-Coffee algorithm

was run in the default mode, which uses the T-Coffee algorithm

alone, and in a custom mode using a combination of 5 different

alignment algorithms (CLUSTALW, MAFFT, MUSCLE, Prob-

Cons, T-Coffee).

(TIF)

Table S1 Comparison of the strengths and weaknesses
of the different site-specific evolutionary constraint
methods used in the analysis. The seven site-specific

evolutionary constraint methods employed in the analysis with

their respective strengths and weaknesses, if any.

(DOCX)

Table S2 Effect of alignment method on the regression
analysis. The table depicts the effect of using different multiple

sequence alignment methods on the Pearson Correlation Coeffi-

cient (PCC) and the P-value of the linear regression against the

mutational score. * For PolyPhen2 and Ka/Ks (Selecton Server) the

respective servers build their own alignment before computing the

scores. PhastCons scores for this study were retrieved from UCSC

Genome Browser. T-Coffee was run both on Default parameters

(Def) and on multiple alignment algorithms (Custom). As evident,

the regression values are not much different across multiple

algorithms suggesting that they are not dependent on any

particular alignment path or are an artifact of alignment quality.

(DOCX)

Table S3 Effect of augmenting the sequence dataset.
The table presents how the different correlation gets affected from

augmenting the sequence dataset with all the 192 available

sequences in Genbank. The correlations were not found to be

affected much with an expanded set of sequences. ND: Not

Determined; NR: No Results.

(DOCX)
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