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Abstract

Summary: Next-generation sequencing (NGS) enables reliable detection of resistance mutations in minority variants
of human immunodeficiency virus type 1 (HIV-1). There is paucity of evidence for the association of minority resist-
ance to treatment failure, and this requires evaluation. However, the tools for analyzing HIV-1 drug resistance
(HIVDR) testing data are mostly web-based which requires uploading data to webservers. This is a challenge for lab-
oratories with internet connectivity issues and instances with restricted data transfer across networks. We present
QuasiFlow, a pipeline for reproducible analysis of NGS-based HIVDR testing data across different computing envi-
ronments. Since QuasiFlow entirely depends on command-line tools and a local copy of the reference database, it
eliminates challenges associated with uploading HIV-1 NGS data onto webservers. The pipeline takes raw sequence
reads in FASTQ format as input and generates a user-friendly report in PDF/HTML format. The drug resistance
scores obtained using QuasiFlow were 100% and 99.12% identical to those obtained using web-based HIVdb pro-
gram and HyDRA web respectively at a mutation detection threshold of 20%.

Availability and implementation: QuasiFlow and corresponding documentation are publicly available at https://
github.com/AlfredUg/QuasiFlow. The pipeline is implemented in Nextflow and requires regular updating of the
Stanford HIV drug resistance interpretation algorithm.

Contact: assekagiri@gmail.com or Deogratius.Ssemwanga@mrcuganda.org

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Next-generation sequencing (NGS) is becoming more popular than
Sanger sequencing for HIV-1 drug resistance (HIVDR) genotypic
testing mainly due to its ability to identify low abundance variants
(Manyana et al., 2021). These variants exist in <20% of the entire
HIV-1 viral population and are commonly referred to as HIV-1 mi-
nority variants (Li, 2014). Drug resistance mutations in minority
HIV-1 variants have been associated with treatment failure across
antiretroviral drug classes, mostly especially for non-nucleoside re-
verse transcriptase-based regimens (Raymond et al., 2018).
Therefore, NGS-based HIVDR testing has great potential in

uncovering novel insights of clinical significance for HIV-1 patients
on antiretroviral treatment (Su et al., 2019).

Freely available bioinformatics tools have been developed for
processing of NGS HIVDR testing data. Of these, the highly recom-
mended include; PASeq (entirely web-based), HyDRA and MiCall
which are accessible via webservers or command-line utilities. A
study comparing the performance of NGS HIVDR analysis tools
showed that HyDRA and MiCall have similar performance though
HyDRA is more time efficient (Lee et al., 2020). After data process-
ing, drug resistance mutations are identified in reference to the
Stanford University HIV drug resistance database (HIVdb) algo-
rithm (Ji et al., 2020). Due to the scarcity of bioinformatics expertise
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to locally analyze NGS-based HIVDR testing data in resource-
limited settings, researchers in such settings mainly depend on the
web-based tools (Ji et al., 2018).

However, uploading NGS data onto webservers is associated
with some challenges; (i) it is not reliable in settings without sustain-
able internet connectivity and (ii) once the data are uploaded, the
data generator loses control of the data security which is critical for
privacy of the patients.

Here, we present a portable and scalable all-in-one analysis pipe-
line that depends on open-source command-line utilities, and a local
implementation of the HIVdb algorithm, which should be updated
regularly to the latest release of the algorithm. An all-in-one pipeline
that can fully run locally is important as it is reliable where instabil-
ity of network connectivity is rife which is a common occurrence in
resource-limited settings, and it ensures full control over data prov-
enance in the context of varying data sharing laws some of which re-
strict data transfers across networks.

2 Methods

QuasiFlow consists of a combination of bioinformatics tools as
shown in the workflow (Fig. 1). The pipeline takes paired-end short
reads from Illumina platforms as input. The quality of the reads is
checked using FastQC (https://www.bioinformatics.babraham.ac.
uk/projects/fastqc/) which generates a report for each of the input
files. FastQC results are aggregated into a single report with
MultiQC (Ewels et al., 2016) for easy inspection. Adapter trimming
of the reads is done using trim galore (Krueger, 2012). As part of
Quasitools (https://phac-nml.github.io/quasitools/), Bowtie2 (Langmead

and Salzberg, 2012) is used to align reads onto the HIV reference gen-
ome HXB2. A local implementation of HyDRA provided by quasitools
is used for HIV-1 variant calling. Quasitools outputs filtered FASTQ
files, amino acid variant call files, a mixed base consensus sequence in
FASTA format and a drug resistance mutation report (consisting of iden-
tified drug resistance mutations and corresponding mutational frequen-
cies) in comma separated values format. The consensus sequences are
parsed onto sierralocal (Ho et al., 2019) for scoring of identified drug-
resistant mutations. Sierra-local generates a JSON object which is parsed
to the R programming environment to generate a drug resistance report
(Fig. 2). The tools are assembled into an automatic workflow using
Nextflow (Di Tommaso et al., 2017). QuasiFlow is distributed with
docker containers for all third-party tools which enables its usage across
multiple computing environments including Windows-, MacOS- and
Linux-based systems. It is publicly available at https://github.com/
AlfredUg/QuasiFlow and a corresponding vignette is available as
Supplementary material.

3 Results

3.1 Testing and validation
The pipeline was tested with an updated version of the resistance gen-
otyping algorithm (HIVdb 9.2). We used a publicly available dataset
obtained from the National Center of Biotechnology Information
(NCBI) Sequence Read Archive, Bio project accession PRJDB3502.
These data comprised paired-end reads derived from 100 samples gen-
erated as part of the study that analyzed quasispecies of HIV-1 near
full-length sequences (Ode et al., 2015). The prevalence of at least one
drug resistance mutation was 85% with a median number of drug
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Fig. 1. Workflow of QuasiFlow pipeline and example drug resistance report. QuasiFlow takes raw sequence reads in FASTQ format as input, performs quality control, map-

ping of reads to a reference genome, variant calling, querying the database for detection of HIV-1 drug resistance mutations and ultimately generates a user-friendly report in

PDF/HTML format. AAVF, amino acid variant format; CSV, comma separated values
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resistance mutations of 3 and an interquartile range of 2–13 at muta-
tion detection threshold (MDT) of 10%. We benchmarked
QuasiFlow with two web-based systems that take FASTQ files as in-
put including HyDRA web (https://hydra.canada.ca/analyses/)
HIVdb-NGS (https://hivdb.stanford.edu/hivdb/by-sequences/) and one
system that accepts consensus sequences in FASTA format as input,
the classical Stanford University HIVdb program (https://hivdb.stan
ford.edu/hivdb/by-sequences/). For each sample, we obtained total
drug resistance scores for antiretroviral drugs of the following drug
classes; protease inhibitors (PIs), non-nucleoside reverse transcriptase
inhibitors (NNRTIs), nucleoside reverse transcriptase inhibitors
(NRTIs) and integrase strand transfer inhibitors (INIs).

Concordance between two systems was measured as the percent-
age of identical drug scores reported by both systems. Comparisons
were made at four MDT, i.e. at 2%, 5%, 10% and 20% (standard
Sanger sequencing threshold) considering a minimum read length of
100, average read quality of 30, minimum read depth of 100 and min-
imum variant quality of 30. Notably, QuasiFlow was 100% concord-
ant with the classical Stanford University HIVdb program at MDT of
20%, 10% and 5%, reducing to 99.60% at MDT of 2%. QuasiFlow
was 99.12% concordant with HyDRA web at MDT of 20%, 98.68%
at MDT of 10%, 98.56% at MDT of 5% and 97.72% at MDT of
2%. Similarly, the concordance between QuasiFlow and HIVdb-NGS
varied from 98.04% at MDT of 20%, 97.48% at MDT of 10%,
97.00% at MDT of 5% and 96.08% at MDT of 2% (Table 1). The
observed discrepancies could be attributed to differences in sequence
quality control strategies employed by the different systems as previ-
ously indicated by Lee et al. (2020) in a study that compared perform-
ance of NGS pipelines for HIV drug resistance.

3.2 Runtime analysis
Analysis was performed on a 64-bit workstation with 16 GB RAM
and an Intel Core i7, 2.3 GHz processor. For near full-length HIV-1
genomic data (NFL dataset), it required 59.17 s for QuasiFlow to
generate a drug resistance report for a pair of FASTQ files with an
average of 316 250 reads per FASTQ file. For paired-end, data
derived from the pol gene (pol gene dataset, Bioproject accession
PRJNA559799) with an average of 50 686 reads per FASTQ file, it
took an average of 21 s to generate a drug resistance report, which is
about a third of the time required for a single sample from the NFL
dataset.

In comparison with web-based systems, the average processing
times for a pair of FASTQ files from the NFL dataset were 02 min
45 s and 01 min 44 s for HIVdb-NGS and HyDRA web, respectively.

Fig. 2. HIV drug resistance report. It consists of a sequence summary section which includes the sequence name, genome regions and the HIV-1 subtype; basic pipeline parame-

ters including the minimum mutation frequency, minimum percentage and minimum read depth; drug resistance interpretation for protease inhibitors (PIs), non-nucleoside re-

verse transcriptase inhibitors (NNRTIs), nucleoside reverse transcriptase inhibitors (NRTIs) and integrase strand transfer inhibitors (INIs); references list for the tools used in

the pipeline

Table 1. Concordance between QuasiFlow and web-based systems

Mutation detection threshold (%) QuasiFlow and HIVdb web (%) QuasiFlow and HIVdb-NGS (%) QuasiFlow and HyDRA web (%)

20 100.00 98.04 99.12

10 100.00 97.48 98.68

5 100.00 97.00 98.56

2 99.60 96.08 97.72

Table 2. Performance comparison of QuasiFlow and web-based

systems

Dataset Timea QuasiFlow HyDRA web HIVdb-NGS

pol dataset Uploading — 14 s 33 s

Processing 21 s 09 s 29 s

NFL dataset Uploading — �01 min �02 min

Processing �01 min 44 s 45 s

aAverage time for uploading/processing a single sample with paired-end

read data.

NFL, near full length.
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For the pol gene dataset, the processing times for a pair of FASTQ
files were 01 min 2 s and 23 s for HIVdb-NGS and HyDRA web, re-
spectively (Table 2).

4 Conclusion

We developed QuasiFlow, a portable and scalable pipeline for the
reproducible analysis of NGS-based HIVDR testing data.
QuasiFlow provides a single platform that can run fully locally/off-
line (with regular updates of the database to latest release of the al-
gorithm) to expeditiously generate user-friendly HIVDR reports
from raw NGS data. We hope this tool will improve reporting times
of NGS-based HIVDR testing results, especially for researchers with
unreliable internet connectivity (Jjingo et al., 2022) and in cases
where data transfer to remote servers is restricted.
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