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Supplementary Results  
Coexpression distance measures 

A number of different metrics were used to measure the similarity (distance) 

between vectors of tissue-specific expression levels: Euclidean distance, Manhattan 

distance, Jensen-Shannon divergence, cosine similarity, Pearson correlation 

coefficient and dot-product.   

The Euclidean and Manhattan distances both measure the distance between 

vectors in geometric space.  The Euclidean distance (dE) between two vectors x=(x1 

… xn) and y=(y1 … yn) is computed as: dE= ( )
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−∑ .  The Jensen-Shannon divergence [1] is an 

information theoretic measure.  To take this measure, expression values for each 

profile were normalized so that they sum to 1.  In this way, we deal with one unit of 

expression distributed among the 28 tissues, i.e. an expression probability distribution.  

The Jensen-Shannon measure gives a way of comparing pairs of probability 

distributions by taking the average of the two distributions and measuring the relative 

entropy between the two observed distributions and the average distribution.  Cosine 

similarity measures the cosine of the angle formed by the two vectors.  The Pearson 

correlation coefficient is a measure of how well a linear equation describes the 

relation between the two vectors x and y.  The dot-product of two vectors (x⋅y) is the 

sum of the products of the individual coordinates and is measured as: 

(x⋅y)= ( )
1
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x y x y x y
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=∑ .  As can be seen from the equation, the dot-product 

can be computed as a weighted version of the cosine similarity.  
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The relationships between these methods, with respect to how they compare 

gene expression profiles, were computed by comparing gene coexpression networks 

constructed using the different methods.  Coexpression networks were built using 

each distance (similarity) measure using thresholds for linking coexpressed genes that 

resulted in networks with comparable numbers of edges.  Then, for each pair of 

methods, the intersection (in terms of edges) of their two networks was computed and 

normalized by the union of the two networks.  This value was taken as the similarity 

(s) between the methods.  All pairwise similarities were converted to distances (d=1-

s), and the pairwise distance matrix was used to cluster the different methods 

(Supplementary Figure 1).  The methods fall into two distinct clusters: distance and 

correlation.  Obviously, the Euclidean and Manhattan distances are quite similar so it 

is not surprising that they group together.  However, the grouping of the Jensen-

Shannon information theoretic measure of divergence with these two measures was 

less expected.  We currently do not have any explanation for this.  The close 

relationship between cosine similarity and Pearson correlation coefficient can also be 

expected since the Pearson correlation coefficient is identical to cosine similarity 

when the mean of the vectors is equal to zero.  The gene expression profile vectors 

used here are normalized by the median so these two measures are quite similar.  

Apparently, these measures can be classified as i-distance methods (Euclidean 

distance, Manhattan distance, Jensen-Shannon divergence) or ii-correlation methods 

(cosine similarity and Pearson correlation coefficient).  The dot-product is an 

analytically distinct from these two classes as shown by its separation from the other 

methods (Supplementary Figure 1).  This seems somewhat unexpected because the 

dot-product is analytically related to both the cosine similarity (see equation above) 

and the Pearson correlation coefficient.  The main difference is that the dot-product 
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weighs the distance by the length of the vectors, which in the case of the data 

analyzed here corresponds to the level of gene expression.  This underscores the 

prominent effect of expression levels on comparisons between expression profiles, 

and confirms the importance of using measures that control for this, such as the 

Pearson correlation coefficient, when considering relative levels of expression across 

tissues. 

Global network characteristics 

Global characteristics of human and mouse gene coexpression networks were 

calculated using six different distance (similarity) measures: Pearson correlation 

coefficient, cosine similarity, Euclidean distance, Manhattan distance, dot-product and 

Jensen-Shannon divergence.  Global characteristics are shown in Supplementary 

Table 1 as well as Supplementary Figures 3 and 4. 

Node degree distributions 

The node degree distributions for the human and mouse gene coexpression 

networks seem to follow a power-law where the probability that a randomly chosen 

node has degree k, is α−∝= kkK ]Pr[ .  However, there appears to be an exponential 

drop-off in the tail of the distributions, so they may not strictly correspond to power-

laws.   

Another method for estimating power-laws is logarithmic binning where the 

nodes are binned together depending on their degree.  The bins are selected such that 

they grow exponentially, i.e., nodes whose degree falls in the intervals [1,2), [2,4), 

[4,8), …, [2k,2k+1) are binned together.  The numbers of nodes that fall within each bin 

are counted and normalized by the size of the bin (Supplementary Figure 2a and 2b).  

The log-log plot of the binned distribution gives a much better estimate of the power-



 - 5 - 

law distribution by eliminating the noise that is usually introduced in the tail of the 

distribution.  The points seem to fall on a straight line, with the exception of the last 

point.  The least squares approximation gives exponents of α=1.13 for the human 

network and α=1.11 for the mouse network.  It should be noted that the last point of 

the plot cannot be disregarded as it comprises a bin of size equal to the size of all 

previous bins together, even if it does not include many data points; thus, the position 

of this last point is diagnostic of the behavior of the distribution tail.   

The shape of the cumulative distribution ]Pr[ dD ≥  of the network degrees 

shows to worst fit to a power-law (Supplementary Figure 2c and 2d).  If the degree 

distribution follows a power law with exponent α, then the cumulative distribution 

should follow a power law with exponent α-1, that is,  1]Pr[ +−∝≥ αddD .  Obviously, 

that is not the case here and the cumulative distribution does not seem to be well 

approximated by a straight line. 

Finally, a non-standard maximum likelihood method for computing the 

exponent of a power law distribution [2] gives α=1.38 for the human network, and 

α=1.36 for the mouse network. 

Network comparison controls 

A series of control analyses were performed to evaluate the possibility that the 

apparent high local divergence of the two networks might stem from a high level of 

experimental noise. The first control tests against the null hypothesis that the number 

of network edges found to be conserved between species could be expected by chance 

alone.  Randomly rewired networks were used to approximate the null distribution for 

the number of conserved edges in the intersection network.  The approach used to 

randomly rewire networks involves swapping edges among pairs of connected nodes 
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[3].  For instance, two edges are chosen, (x,y) and (z,w), such that x is not linked to w 

and z is not linked to y, and the existing edges are then exchanged yielding the new 

pairs (x,w) and (z,y).  This approach is conservative in the sense that it ensures that the 

node degrees are preserved in the rewired networks.  Supplementary Figure 7a shows 

a comparison of the number of edges shared by 1,000 randomly rewired human and 

mouse networks (μ=2,277.5, σ=44.95) with the number of edges actually observed in 

the human-mouse intersection network (13,060).  Clearly, there are far more edges 

conserved between the human and mouse coexpression networks than expected by 

chance alone (Z=240, P=0).  This indicates that, despite the high divergence between 

the species-specific networks, there is substantial conservation of the gene co-

expression network structure between human and mouse, presumably, because 

evolution of gene expression is, to some extent, constrained by purifying selection.   

 Another set of controls was implemented to directly evaluate the effect of the 

quality and source of the expression data on the local network structure conservation 

between species.  These controls took advantage of the fact that two replicate 

microarray experiments were performed for every tissue sample in the Novartis 

mammalian gene expression atlas (GNF SymAtlas) data set.  In the first of these data 

quality controls, the expression data sets were partitioned into four slices of increasing 

between-replicate variance.  For tissue-specific expression profiles, the coefficient of 

variance was computed for each pair of two tissue-specific replicate experiments, 

summed across all 28 tissues and averaged for human and mouse orthologs: 

28

1

1
2

mouse

human i

σ
μ=

∑ ∑ , where σ is the standard deviation and μ is mean of the two expression 

level measurements.  Intersection networks were computed for these variance 

quartiles and the percentage of conserved edges were observed for each.  There is 
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indeed a trend whereby the percentage of conserved edges decreases as the 

experimental variance increases (Supplementary Figure 7b).  However, the magnitude 

of the effect is quite small and not nearly enough to explain the observed low level of 

between species conservation.  In addition, the trend line that fits this data (y=-0.367) 

was not statistically significant when the residuals were evaluated using ANOVA, 

F=0.19, df=2, P=0.20, further underscoring that experimental variance alone cannot 

explain the low between species conservation.   

 Experimental replicates were also used to compute two replicate-specific data 

sets for each species, and then between-replicate intersection networks were built 

from these data.  These experimental replicates measure variance in the RNA-

isolation and hybridization processes.  The percentage of conserved nodes and edges 

is far greater for the replicate intersection networks than for the between-species 

intersection network (Supplementary Figure 8a and 8b), further confirming that the 

divergence between species is not due primarily to experimental noise.  The two 

species-specific replicate intersection networks were then compared to re-compute a 

normalized human-mouse intersection network that accounts for the loss of 

information on local network structure conservation caused by experimental noise.  

Although the normalized intersection network had a substantially greater proportion 

of conserved nodes, the fraction of conserved edges increased only slightly with 

respect to human and decreased slightly relative to the mouse (Table 2).  This 

difference can be attributed to the fact that the mouse data show less between- 

replicate variance and as a result have a greater fraction of edges in the mouse-

specific replicate intersection network.      

 Finally, a control that combined both experimental and actual biological 

variance was conducted using an independent microarray survey of mouse gene 
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expression levels [4], hereinafter referred to as the Toronto data set.  When the 

Toronto data was compared to the GNF SymAtlas, ~61% of the nodes and 15% of the 

edges were conserved between the two sets.  While the combination of the two 

sources of noise led to a substantial loss of coexpression signal, the level of 

conservation remained ~2x as high as seen between species for both nodes and edges. 

 In addition to the controls described above for experimental and biological 

variance, a series of PCC thresholds were used to evaluate the effect of the similarity 

measure strength on the level of between species conservation.  We built human and 

mouse networks using PCC thresholds of 0.5, 0.6, 0.7, 0.8 and 0.9.  The percentage of 

edges that are conserved in the intersection network increases as the PCC threshold is 

lowered (Supplementary Figure 9a).  However, even at a very permissive r-value 

threshold of 0.5, which results in an order of magnitude increase in the number of 

observed co-expressed gene pairs, the fraction of conserved edges is still small 

(~14%).  Interestingly, the relationship between the number of observed intersection 

edges, relative to the maximum possible number of such edges given the number of 

conserved nodes, and the PCC threshold is non-linear and forms a U-shaped 

distribution (Supplementary Figure 9b).  At high r-values (≥0.9) the number of nodes 

(n) in the human and mouse coexpression networks is low, and thus the possible 

number of conserved edges in the intersection network [n(n-1)/2] is low as well.  So, 

while the absolute number and percentage of conserved edges at this threshold is low, 

it actually represents a large fraction of the possible number of conserved edges.  In 

other words, if a gene is coexpressed at r≥0.9 with any other gene in one of the 

species networks, it is likely to be involved in the same coexpression relationship in 

the other species network.  As the r-value threshold drops (0.8-0.6) this effect 

disappears.  This is because at these values more and more genes are involved in 
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coexpression relationships in either species network, but these coexpression 

relationships are not so strong as to guarantee that they are present in both networks.  

Then as the r-value drops even more (0.5), the number of nodes in both species 

networks, and accordingly the number of possible conserved edges, becomes 

saturated (i.e. reaches the total number orthologs analyzed-9,105) while the number of 

interactions continues to increase.  Thus the fraction of conserved edges starts to 

increase again and reaches levels comparable to what was seen for the very conserved 

interactions at r≥0.9.  This trend can be taken to suggest that the r-value threshold of 

0.7 is close to optimal for defining coexpression relationships.  
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Supplementary Figures 
Supplementary Figure 1 - Relationships among the different distance 

(similarity) measures 

Gene coexpression networks were built using the six different measures of distance 

(similarity) between gene expression profile vectors.  Measures were compared by 

taking the pairwise intersection of network edges normalized by the union of edges. 

Supplementary Figure 2 - Node degree (k) distributions for human and mouse 

gene coexpression networks 

Logarithmic binning where k falls into the intervals [1,2), [2,4), [4,8), …, [2k,2k+1) 

for human (a) and mouse (b).  Cumulative frequency distributions showing f[K≥k] for 

human (c) and mouse (d). 

Supplementary Figure 3 - Node degree – f(k) × k – distributions for human and 

mouse gene coexpression networks 

All distributions are plotted in log10-log10 scale.  Distributions are shown for all six 

distance (similarity) measures used. 

Supplementary Figure 4 - Clustering coefficient against node degree – C(k) × k 

–  distributions for human and mouse gene coexpression networks 

The degree (k) is shown on the x-axis and the average clustering coefficient <C> for 

all nodes with degree k is shown on the y-axis.  Distributions are shown for all six 

distance (similarity) measures used. 
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Supplementary Figure 5 - Node degree (k) distributions for the conserved 

human-mouse intersection network 

a) Logarithmic binning where k falls into the intervals [1,2), [2,4), [4,8), …, [2k,2k+1).  

b) Cumulative frequency distributions showing f[K≥k]. 

Supplementary Figure 6 - Clustering of human (a) and mouse (b) gene 

coexpression networks 

Clustering was done using the Autopart algorithm [5].  Genes are arranged along the 

axes according to network specific clusters.  Dots correspond to edges between linked 

(coexpressed) genes.  Blue dots are species-specific edges and red dots are edges 

found in the conserved human-mouse intersection network.  Network modularity is 

revealed by the discrete block-diagonal structure of the dots. 

Supplementary Figure 7 - Network comparison controls 

a) Number of conserved edges for 1,000 comparisons of randomly rewired networks 

versus observed number of conserved edges between the human and mouse gene 

coexpression networks.  b) Percentage of conserved edges for networks built 

independently four quartiles of increasing between replicate variance.  Trend line fit 

to the data (y=-0.367) is shown. 

Supplementary Figure 8 – Replicate network comparison controls 

The percentage of intersection nodes (c) and edges (d) is shown for various replicate 

network comparisons.  Percentages are shown relative to each of the networks 

(network1 & network 2) compared. 
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Supplementary Figure 9 – PCC threshold network comparison controls. 

a) The percentage of intersection edges (y-axis) relative to the human (blue) and 

mouse (red) networks is shown for different Pearson correlation coefficient thresholds 

(x-axis).  b) The percentage of intersection edges relative to the maximum number of 

possible edges given the number of shared nodes. 

 

 

Tables 
Supplementary Table 1  - Global characteristics of the coexpression networks 
 
 PCC1 Cosine1 Euclidean1 Manhattan1 Dot-product1 JS1 
Human 
Nodes2 7,208 7,031 3,436 3,694 4,922 4,017 
Edges3 158,418 142,126 152,491 159,767 149,279 145,934 
<k>4 21.98 20.21 44.38 43.25 30.33 36.33 
<C>5 0.3744 0.3759 0.5530 0.5231 0.7828 0.5331 
<l>6 4.75 4.84 3.12 3.04 2.74 3.40 
Mouse 
Nodes2 7,730 7,591 3,176 3,363 4,722 3,698 
Edges3 178,166 170,046 175,625 194,062 211,097 195,000 
<k>4 23.05 22.40 55.30 57.70 44.70 52.73 
<C>5 0.4003 0.4089 0.5578 0.5409 0.8084 0.5533 
<l>6 4.80 4.87 3.09 2.94 2.67 3.50 
 
1Distance (similarity) measure used: PCC=Pearson correlation coefficient, JS=Jensen-
Shannon divergence 
2Number of genes (nodes) in the network – i.e. nodes with one or more edges 
3Number of coexpressed gene pairs (edges) in the network 
4Average degree (k), number of edges shared with other nodes, per node 
5Average clustering coefficient (C) per node 
6Average shortest path length (l) between any two nodes in the network 
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