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ABSTRACT

Motivation: Chromatin immunoprecipitation followed by
high-throughput sequencing (ChIP-seq) is widely used in biological
research. ChIP-seq experiments yield many ambiguous tags that
can be mapped with equal probability to multiple genomic sites.
Such ambiguous tags are typically eliminated from consideration
resulting in a potential loss of important biological information.
Results: We have developed a Gibbs sampling-based algorithm
for the genomic mapping of ambiguous sequence tags. Our
algorithm relies on the local genomic tag context to guide the
mapping of ambiguous tags. The Gibbs sampling procedure we use
simultaneously maps ambiguous tags and updates the probabilities
used to infer correct tag map positions. We show that our algorithm
is able to correctly map more ambiguous tags than existing mapping
methods. Our approach is also able to uncover mapped genomic
sites from highly repetitive sequences that can not be detected based
on unique tags alone, including transposable elements, segmental
duplications and peri-centromeric regions. This mapping approach
should prove to be useful for increasing biological knowledge on the
too often neglected repetitive genomic regions.
Availability: http://esbg.gatech.edu/jordan/software/map
Contact: king.jordan@biology.gatech.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Genome-wide chromatin immunoprecipitation followed by high-
throughput sequencing (ChIP-seq) experiments are increasingly
used in biological and medical research (Barski et al., 2007; Park,
2009). ChIP-seq experiments produce a large amount of short
sequence tags which need to be reliably mapped back to the genome
and processed to reveal biologically relevant signal. A number of
algorithms have been recently developed to process ChIP-seq data
(Bock and Lengauer, 2008). These include algorithms for genomic
mapping of sequence tags (Langmead et al., 2009; Li et al., 2008),
smoothing of ChIP-seq tag distribution signals (Thurman et al.,
2007) and detection of statistically significant tag peaks (Zhang
et al., 2008). One remaining challenge for the processing of ChIP-
seq data is the mapping of ambiguous tags. Ambiguous tags are
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those that can be mapped to multiple genomic sites, each of which
has significant sequence similarity with the tag, and thus it is difficult
to distinguish the real site from all the possible sites. Usually,
researchers simply disregard ambiguous tags and only make use
of uniquely mapped tags. This often results in a substantial loss
of information and may bias conclusions based on the analysis of
unique tags alone. This is particularly true for mammalian genomes,
such as the human genome, which have numerous interspersed
repeat sequences. Repeat sequences that are highly similar may
produce a large amount of ambiguous tags, which if not mapped
will be disregarded in subsequent analyses. Research has shown that
interspersed repeat sequences provide a wide variety of functional
elements to eukaryotic genomes (Feschotte, 2008). Therefore,
disregarding ambiguous tags may lead to an underestimate of the
biological significance and functional roles of interspersed repeated
DNA.

Two different approaches have been developed for the mapping
of ambiguous sequence tags. The mapping software MAQ randomly
selects a possible site and assigns it to the ambiguous tag (Li et al.,
2008). Each possible site has the same probability of being selected.
In other words, there is no way to know if this approach yields
a correct mapping of ambiguous tags. The second approach takes
advantage of the local context of mapped tags to more accurately
assign genomic locations for ambiguous tags. This approach rests
on the assumption that real ambiguous tag sites are expected to
have more sequence tags in the local vicinity, whereas the incorrect
sites for the same ambiguous tags are expected to have fewer
numbers of co-located tags (Faulkner et al., 2008; Hashimoto et al.,
2009). To apply this method for any ambiguous tag, the number
of overlapping mapped tags at each of the possible ambiguous tag-
mapped positions are counted and used to assign fractional weights
to each possible position. The ambiguous tag is then fractionally
mapped to each possible position with the fractions weighted by
the local-mapped tag context. In other words, possible sites with
more tags already mapped are deemed to deserve higher confidence
and are accordingly assigned greater fractions of ambiguous tags.
The fractional mapping method makes important contribution to
the ambiguous tag mapping problem. But as the use of ChIP-seq
in scientific research is increasing, it will be important to further
refine the accuracy of mapping ambiguous tags. First, the fraction
method is heuristic as the fractions assigned to the possible map
sites are directly proportional to the number of tags mapped to each
site. While this approach is consistent with biological intuition, it
lacks statistical support. A more sensitive probabilistic method could
be used to better represent and measure the confidence level of
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Fig. 1. Scheme of our Glibbs sampling algorithm. Possible tag map sites along with their likelihood ratios are shown prior to stochastic mapping. Gray boxes
represent incorrect sites, and the black box represents the correct site. An arrow between a tag and a site means the tag could possibly be mapped to that
site. One iterative cycle of joint stochastic mapping and parameter updating is shown. The black arrows point to selected sites for each tag after stochastic
mapping.

each possible site. Second, the fraction method deterministically
fractionates the ambiguous tags without guarantee that the result
is optimal. In other words, it does not search the possible space
of assignments of ambiguous tags and lacks information on the
accuracy of the final results. Third, the fraction method is not realistic
enough since it splits tags by assigning fractions of ambiguous tags to
each possible site. In reality, each sequence tag is only derived from
a single genomic site. Thus, fractioning sequence tags inevitably
results in wasting signal on incorrect sites and weakening the signal
level on real sites.

To address the outstanding issues with ambiguous tag mapping,
we have developed a probabilistic Gibbs sampling-based algorithm
to map more ambiguous tags with greater accuracy. Our
approach assigns ambiguous tags to single genomic sites, without
fractionating tags, and iteratively samples within the space of the
possible mappings of ambiguous tags. The Gibbs sampling strategy
(Lawrence et al., 1993; Neuwald et al., 1995) guides the algorithm to
achieve accurate unique mappings of ambiguous tags. The algorithm
also provides statistical support for ambiguous tag mapping via
the use of likelihood ratios that measure the confidence levels
of possible genomic map sites. We evaluated the performance of
our algorithm compared to existing approaches using sequence-tag
data from the highly repetitive human genome. We demonstrate
that our probabilistic approach to mapping ambiguous tags yields
superior results as measured by (i) the fraction of correctly mapped
ambiguous tags; (ii) the precision and recall of correctly recovered
repetitive genomic sites; and (iii) the level of signal found at
repetitive sites.

2 METHODS

2.1 Overview of the algorithm
Our algorithm maps ambiguous tags to individual genomic sites by taking
advantage of the local genomic context provided by co-located tags. For
each possible map site of an ambiguous tag, the number of co-located tags
is counted and used to calculate a normalized likelihood ratio that represents
its probability of being the real map site. Map sites are randomly selected
based on the underlying probability distributions from the likelihood ratios.
Likelihood ratio scores are then updated based on the new mapping, and this
procedure iterates until convergence, i.e. until there is little or no change in
the map positions between iterations.

A Gibbs sampling strategy is used to iteratively map ambiguous tags to
possible genomic sites while updating the probability that each tag is mapped
to its most likely site. Gibbs sampling was chosen because it allows for a
simultaneous updating of the map positions and the parameters for these
positions. Through the updating iterations, the algorithm searches in the space
of all possible mapping configurations where each mapping configuration
can be considered as a bipartite graph with edges connecting tags and sites
(Fig. 1). Intuitively, once an ambiguous tag is correctly mapped to the real
site, it will guide the algorithm to map those tags derived from the same site
to it with higher probability.

2.2 Problem formulation
For each ambiguous tag, there are multiple possible genomic sites to which it
could be assigned. It is not possible to assign a specific site to an ambiguous
tag with 100% confidence, and so we need to calculate the confidence
for each probable site by some measurement and then select a reasonable
site for each ambiguous tag based on those confidences. By ‘reasonable’,
we mean a selection of sites that will minimize the number of incorrect
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mappings of ambiguous tags. Suppose there are T genomic sites associated
with ambiguous tags and the set of ambiguous tags is

A={a1,a2,··· ,aN } (1)

where ai represents ambiguous tag i. We use

Si =
{
Si1,Si2,··· ,Sini

}
(2)

to denote the set of probable sites for ai, where ni is the total number of
probable sites for ai.

There are two aspects of this problem. One is the measurement of
confidence for each probable site, and the other one is the algorithm used
to select reasonable sites for ambiguous tags. An applicable measurement
of confidences of probable sites needs to be monotonic with the number
of tags that are mapped to each specific site and should reflect both
the information of the distribution of tag numbers of real sites and the
information of the distribution of tag numbers of background. We use
likelihood ratio as the confidence measurement based on both intuitive
clues and theoretical analysis. Intuitively, likelihood ratio is monotonic
with tag counts and is also computationally tractable. Furthermore, it takes
both the background distribution of tag counts and the estimated target
distribution under consideration. Higher likelihood ratios correspond to
higher confidences and increase non-linearly with tag counts. Likelihood
ratios will increase sharply for large tag counts and be relatively low for
sites with few tags. This property will help to avoid the problem of wasting
fractions of mapped tags on sites that contain few tags; a problem that could
be particularly vexing if many such low-confidence sites exist for a single
ambiguous tag. The likelihood ratio for sij is denoted as

LRj = Ps
(
kj

)
Pn

(
kj

) . (3)

Ps is the estimated target distribution of tag counts in real sites and Pn is
the background distribution of tag counts. The kj is the tag count at site j.
The details of these two distributions will be discussed in the next section.
Given the calculated likelihood ratios, it is possible for us to reasonably map
ambiguous tags.

Furthermore, from a theoretical point of view, normalized likelihood ratio
is the measurement we will automatically derive from the calculation of
the conditional probability of assigning ambiguous tags to a specific site
given the assignments of all the other tags. We use D to denote the original
data, which essentially represent the associations of tags with possible sites,
and M to denote the whole assignment of tags to sites. M[−i] represents the
assignments of tags to sites, except the assignment of tag i.

P
(
ai ∼sij

∣∣M[−i],D
)

(4)

represents the conditional probability of assigning tag i to the j-th probable
site of i, given the original data and the assignment of all tags except tag i.
We use U to represent the whole set of sites.

Below we show that this conditional probability is equal to the normalized
likelihood ratio, as derived from Bayes rules.

P(ai ∼sij |M[−i],D)= P
(
ai ∼sij,M[−i] |D

)
P

(
M[−i] |D

) =

{Ps(kj +1)
∏

m∈Si\ j
Pn(km) }×P(U\Si)

∑
τ∈Si

{
Ps(kτ +1)

∏
m∈Si\τ

Pn(km)

}
×P(U\Si)

=
(

Ps (kj+1 )
Pn (kj )

)
∑
τ∈Si

Ps (kτ+1 )
Pn (kτ )

(5)

So the normalized likelihood ratio represents the conditional probability for
the j-th probable site given the assignment of other tags. Equivalently, this
conditional probability serves as our predictive update formula for the Gibbs
sampling procedure described below.

In order to calculate likelihood ratios for genomic sites, we need to
first map those ambiguous tags to get the number of tags mapped to each
specific site. In other words, mapping of ambiguous tags and calculating the

likelihood ratios for each site are circular. This circularity led us to adopt
Gibbs sampling strategy, which is a stochastic version of EM algorithms, to
select reasonable sites for ambiguous tags. To do this, we first initialize the
likelihood ratios for genomic sites using the total number of tags that can
be probably mapped. Then we map each ambiguous tag to a specific site
based on the initial likelihood ratios. To be more specific, we stochastically
map each ambiguous tag to a genomic site with the probability equal to the
normalized likelihood ratio of the site. Then we update the likelihood ratios
given the current mapping of ambiguous tags. We continue the update on the
mapping and the calculation of likelihood ratios until there is no significant
change. Through the iterative updates (stochastic mapping and parameter
updating), the overall likelihood ratios are expected to be optimized, and
so we achieve an accurate mapping of ambiguous tags. Since the complete
normalized likelihood ratio for a configuration of mapping is proportional to∏

i∈U

(
Ps (ki )

Pn (ki )

)
(6)

where i is the index of genomic sites with tags mapped, we can rewrite this
formula based on tag counts and obtain the formula as

∏
τ∈σ

(
Ps (τ )

Pn (τ )

)n (τ )

(7)

where n(τ) represents the number of sites with τ tags mapped. Here, σ

represents the set of tag counts for all sites. For instance, if σ consists of
large numbers, it means that most sites are mapped with large number of
tags and the mapping is a reasonable one. Otherwise, most sites are mapped
with a small number of tags and the set of tags are scattered into diverse sites.
Taking the logarithm of this formula and dividing by Z , the total number of
tags, we get ∑

τ∈σ

(
n (τ )

Z

)
log

(
Ps (τ )

Pn (τ )

)
(8)

When Z is sufficiently large, it approaches the relative entropy between
Ps and Pn on the subset of σ. So essentially, the Gibbs sampling procedure
described above searches a certain subset σ to maximize the relative entropy.
When σ consists of only large numbers, the relative entropy is larger. This
analysis further demonstrates that our algorithmic design is reasonable.
Equation (8) shows that by using normalized likelihood ratios, our objective
function is equivalent to the relative entropy.

In theory, Gibbs sampling will have good performance given a sufficient
number of iterations. Thus, there may be concerns about the time necessary
for the algorithm to converge. However, since unique tags count for the
majority of the whole set of tags, and these help to guide the mapping
of ambiguous tags, this has the effect of shortening the algorithm time
significantly. In our experience, about five iterations are sufficient for
convergence.

2.3 Algorithm
Next we describe each step of the algorithm in detail along with the
definitions of necessary concepts. The scheme of the method is shown in
Figure 1.

Phase 1. Initialization
Step 0. The program Bowtie (Langmead et al., 2009) is used to map all

sequence tags to the genome and only genomic loci with significant sequence
similarities are used for the following steps. Sequence tags are classified into
unique tags and ambiguous tags by the Bowtie mapping algorithm.

Step 1. To calculate the likelihood ratios, we need to model the
distributions of tag counts for real modified sites (Ps) and for background
(Pn). For real modified sites, we use the Normal distribution to approximate
the real distribution of tag numbers

Ps ∼N
(
µ,σ2

)
(9)

To identify genomic sites that are most likely to actually be modified
(i.e. real-modified sites), we use sites with large numbers of mapped unique
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tags. We then use the numbers of unique tags associated with those sites to
calculate the average tag count and standard deviation for each site genome
wide. Note that the average tag count calculated here is corrected by a factor
which takes into consideration that the real average tag count will be greater
once ambiguous tags are included. For background, we use the Poisson
distribution to approximate the background distribution of tag counts

Pn ∼Poisson
(
λ
)

(10)

The Poisson distribution is an appropriate model for counting processes
that produce rare random events and thus can be applied here to describe
the background tag count distribution. We count the total number of tags
(both unique and ambiguous tags) and calculate the average tag number for
each site. The average tag number serves as the parameter (λ) of Poisson
distribution. After getting all the parameters, we calculate the likelihood
ratios for various tag counts

LR
(
k
)= Ps

(
k
)

Pn
(
k
) (11)

and get a table of likelihood ratios which will be used in subsequent steps.
Step 2. In order to obtain the initial settings of likelihood ratios for all the

probable genomic loci, we use the number of tags of each site (both unique
and ambiguous tags) to calculate the likelihood ratios. Since the ambiguous
tags have not been assigned to a specific genomic site, here we assign each
ambiguous tag to all the probable sites to initialize the likelihood ratios. The
calculation of likelihood ratios for various tag numbers has already been done
in Step 1 and the algorithm only needs to search the table of likelihood ratios.
A special notion here is that we introduce the information content factor
(0< f <1) of ambiguous tags compared to unique tags. Since the nature of
uncertainty of ambiguous tags, the information content of ambiguous tags is
smaller than unique tags. Thus, the effective number of ambiguous tags (ke)
is corrected by f and the number of tags used to calculate likelihood ratio is:

k =ku +ke =ku +kaf (12)

where ku is the number of unique tags and ka is the number of ambiguous
tags. By the user, f can be set based on their confidence of ambiguous tags and
provide flexibility of the method. The suggested value of f is the inverse of
the mean number of associated sites of ambiguous tags. If the mean number
of associated sites of ambiguous tags is larger, then f should be made smaller
to weight unique tags more heavily for the mapping.

Phase 2. Iterative weighted mapping
Step 3. Given the likelihood ratio (LRi) of probable site j (j=1,2,...,nj)

for ambiguous tag ai, the algorithm stochastically selects a probable site and
assigns it as the site of the corresponding ambiguous tag. The probability
(Pij) of probable site j to be selected for ai is proportional to the likelihood
ratio of site j.

Pij = LRj∑
k∈Si

LRk
(13)

where k =1,2,...,nj .
Thus, probable sites with higher likelihood ratios will have a greater

chance of being assigned.
Step 4. Based on the current assignments of sites for ambiguous tags

obtained from Step 3, the likelihood ratios of all the probable sites
are updated. The new likelihood ratio of each probable site is obtained
accordingly to the current number of tags assigned to the site.

Step 5. Iterate through Steps 3 and 4 until no significant changes occur,
i.e. until convergence. For a given threshold, if the number of reassignments
of ambiguous tags is smaller than the threshold, then the iterations will stop
and output the final mapping of tags.

3 RESULTS

3.1 Sequence tag datasets
In order to test the performance of our algorithm, we randomly
selected ∼50 000 sites of the human genome as a benchmark.

Each site is 147 bp in length (i.e. mono-nucleosomal) and the set
of sites contains transposable elements and simple repeats in the
same fractions as the human genome. Then we generate short
sequence tags from these sites under a range of set of parameters.
These parameters include sequence tag length (L), signal-to-noise
ratio (SNR) and sequencing error level (SE). In theory, shorter
sequence tags are expected to have more ambiguous tags. To test
the performance of our algorithm on different sequence tag lengths,
we generate libraries with 20 bp tags and libraries with 35 bp tags.
SNR corresponds to the specificity of the ChIP experiments. Noise
here means the fraction of sequence tags derived from sites which are
not the real modified sites. In experiments with high specificity, the
majority of sequence tags are derived from the real modified sites,
while in experiments with high level of noise, there are increased
number of sequence tags derived from other sites. And we define
the SNR as the ratio of the probability that a sequence tag is derived
from the real modified sites over the probability that a sequence
tag is derived from other sites. To test our algorithm’s performance
under different SNRs, we generate libraries with SNR set as 99
(corresponds to 99% tags derived from real modified sites) and
libraries with SNR set as 9 (corresponds to 90% tags derived from
real modified sites). The sequencing error level corresponds to the
probability of errors in high-throughput sequencing. We generate
libraries with sequencing error levels as 2/5L and 4/5L. The reason
to set SE this way is as follows. We assume that the sequencing
errors on different sites are independent from each other. This is
not completely true in reality but is acceptable as a first-order
approximation. Then the total number of errors for each sequence
tag with length L would follow binomial distribution. So under
SE = 2/5L, the fraction of sequence tags without errors is ∼60% and
under SE = 4/(5L), the fraction is ∼50%. It means that the quality of
the simulated sequencing is not very good. Under such conditions,
some sequence tags might be mis-mapped or become ambiguous
tags. The purpose of this setting is to make sure that our algorithm
test results are conservative.

Since each of these three parameters only has two optional values,
there are eight combinations of different values of those parameters
and so we generate one sequence tag library for each combination
of the parameter values. The parameters for each library are listed
in Supplementary Table S1.

We also used a second larger benchmark set consisting of 173 877
sites of the human genome. These sites were obtained from a ChIP-
seq study of histone modifications based on ABI SOLiD sequencing
platform (Victoria V. Lunyak, unpublished data) that only used
unique sequence tags, and each site has significant number of tags.
This dataset was used because it mimics conditions one would expect
for real sites: a larger number of total sites and a realistic distribution
of sites along the human genome. In order to test our algorithm, we
generated sequence tags for these sites the same way as described
above under one set of parameters (Supplementary Table S1).

After preparing sequence tags, we ran the program Bowtie
(Langmead et al., 2009) to map the sequence tags to the human
genome. The fractions of ambiguous tags in the nine libraries
range from 9.7% to 37.6%. The fraction of sites undetected using
unique tags alone are influenced by the tag threshold used. Higher
threshold cause more undetected sites. For the lowest threshold (four
tags) used in our analyses, the fractions of undetected sites range
from 16.4% to 28.4%. These values underscore the importance of
accurately mapping ambiguous tags to recover undetected sites.
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3.2 Fraction of correctly mapped ambiguous tags
The first and most direct measurement of the algorithm performance
is the fraction of correctly mapped ambiguous tags. Since the
fraction method does not assign the ambiguous tags to a specific site,
this measurement is not applicable. So we compared our algorithm
against the MAQ software method, which randomly selects a site
for each ambiguous tag. The comparison on the eight sequence tag
libraries shows that our algorithm correctly maps from 49% to 71%
of ambiguous tags, while the MAQ method correctly maps from
8% to 23% of ambiguous tags (Fig. 2). Over all eight sequence tag

Fig. 2. Fractions of correctly mapped ambiguous tags for each library.
Library descriptions are given in Supplementary Table S1. Gray bars show
result based on MAQ, and black bars show results based on our Gibbs
sampling algorithm.

libraries evaluated, our algorithm maps from 38% to 51% more tags
than MAQ. In the best case, our algorithm maps the majority of
ambiguous tags (71%) and only a small fraction of information is
lost.

3.3 Comparison of rescued sites
The other measurement of the algorithm’s performance is the
numbers and fractions of correctly ‘rescued’ genomic sites, which
can not be observed by unique tags alone. An important issue
regarding the rescued sites is the tag number threshold, above which
a site is called rescued with a certain number of tags (Fig. 3A).
Different thresholds will result in different sets of true positives,
false positives and false negatives. Since there are various methods
to decide the threshold and different users usually set different
thresholds, we tested our algorithm’s performance on a set of three
different thresholds (four, six and eight tags). Together with the
previously described the nine sequence tag libraries we use, this
results in a set of 27 conditions for analysis.

The first thing we did was to compare the numbers of genomic
sites identified using unique tags alone to the numbers of genomic
sites identified by including ambiguous tags with our method
(Supplementary Table S2). Over the 27 conditions, the inclusion of
ambiguous tags yields an average increase of 11.46% in the fraction
of genomic sites accurately identified. The use of ambiguous tags

Fig. 3. Compariion of algorithm performance. (A) Illustration of data used to test algorithm performance. (B) Variant tag count thresholds could used in the
algorithm tests. (C) Recall and precision fractions for map sites are shown for the algorithms compared here (MAQ, blue; fraction method, dark blue; Gibbs
sampling method, green) over eight tag libraries. (D) Recall and precision are shown for the larger tag library across three tag thresholds.
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Fig. 4. Examples of ambiguous tag mapping results. Tracks are shown through UCSC Genome Browser. The track of real sites shows the sites in the
benchmark libraries. The track of Fraction method shows the mapping result by fraction method and the track of Gibbs method shows the mapping result by
our Gibbs method. The heights of data represent the number of tags mapped to those sites. The tracks of repetitive genomic regions (segmental duplications,
interspersed repeats and simple repeats) are also shown.

resulted in the identification of 2602–51 508 sites missed with unique
tags alone.

Next, we compared our method for including ambiguous tags to
the MAQ and fraction methods. To do this, after excluding sites that
can be found by unique tags alone, we divide the set of sites rescued
by ambiguous tags into two subsets by comparing the set with the
benchmark. The correctly rescued sites are true positives (TP) and
other sites are false positives (FP). The sites in the benchmark which
remain undiscovered are false negatives (FN) (Fig. 3B). In order
to test the performances, we employ recall RE = TP/(TP + FN) and
precision PE = TP/(TP + FP) as measurements.

For the four libraries with 35 bp tags and the four libraries
with 20 bp tags, our algorithm shows the highest recall over all
conditions (six-tag threshold shown in Figs. 3C and 4 and eight-
tag thresholds shown in Supplementary Fig. S1 and numbers of
sites shown in Supplementary Table S3). Our algorithm also has the
highest precision for these libraries over 14 of the 24 conditions
evaluated (Fig. 3C, Supplementary Fig. S1). For the 10 cases where
our algorithm did not show the highest precision, the difference
from the fractional method was marginal (Supplementary Table
S3). In general, when recall increases precision may be expected
to decrease. The simultaneous increase in both recall and precision

in 14 cases evaluated here supports the improved performance of our
algorithm. To more quantitatively evaluate the improvement in the
performance of our algorithm for both recall and precision together,
we used the harmonic mean (F) of the recall and precision values
for each condition (i.e. each library and threshold combination).
The F-values are higher for our algorithm over all conditions,
indicating an improvement in performance when recall and precision
considered together (Supplementary Table S4). Similar results can
be seen when the larger tag library is evaluated with our algorithm
over the three thresholds. Recall improves substantially in all cases,
and precision decreases marginally for thresholds 6 and 8 (Fig. 3D
and Supplementary Table S5). The F-values showing the combined
recall and precision performance are higher for our method over all
three thresholds (Supplementary Table S4).

In Figure 4, we provide two examples of our mapping results
with the comparison against the benchmark and the result of fraction
method. It can be seen that our algorithm rescues more sites than
fraction method, and that the average number of tags at rescued sites
is higher than seen for the fraction method. This can be attributed
to the fact that the fraction method assigns a fraction of ambiguous
tags on each site and wastes information on other sites. The greater
number of tags per rescued site can help to ensure that these sites are
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Fig. 5. (A) The number of correctly discovered sites in various genomic
features by unique tags alone (white) and our Gibbs method (black) compared
with the corresponding numbers in the benchmark library. (B) The fractions
of correctly discovered sites in various genomic features by unique tag alone
(white) and our Gibbs method (Black). [TE, transposable element; s_r, simple
repeats; microSat, microsatellites; seg_dup, segmental duplication; centro,
peri-centromeric region].

robust to different user thresholds that are employed to distinguish
signal from noise.

It should be noted that the two examples shown here represent
segmental duplications (Fig. 4A) and satellite regions (Fig. 4B),
respectively. It is expected that such highly repetitive regions will
produce many ambiguous tags and thus would be difficult to uncover
with ChIP-seq. However, our method achieves good performance in
such repetitive regions. Furthermore, the second example is located
very near to the centromere of chromosome 7. Centromeric regions
are important in various cellular processes, such as cell division, and
correct mapping of ambiguous tags to centromeric regions could
help to uncover specific biological roles for such regions.

3.4 Biological relevance
Transposable elements, simple repeats, micro-satellites, segmental
duplications and pericentromeric regions are genomic regions rich
in repeat sequences. These regions could produce large numbers
of ambiguous tags and will be difficult to uncover due to the
technical problem of mapping ambiguous tags. The ability to
correctly map ambiguous tags may facilitate novel discoveries
regarding the biological significance of such repeat regions, many
of which have been ignored in past chromatin immunoprecipitation
studies. For instance, we show that our method is able to detect
previously uncharacterized segmental duplications and satellite

regions in Figure 4. In addition, our method uncovered a previously
undetected modified histone site in the proximal promoter region of
the CWF19-like one cell cycle control protein.

To further investigate whether our algorithm really helps us to find
more sites in genomic repeats, we used the UCSC genome browser
(Karolchik et al., 2004; Kent et al., 2002) to count the numbers
and fractions of rescued sites in those regions and compared them
against using unique tags alone (Fig. 5). This analysis demonstrates
that our algorithm is able to rescue substantial numbers of sites in
genomic repeat regions, especially for segmental duplications and
pericentromeric regions. Unique tags can only uncover around half
of the sites in segmental duplications and pericentromeric regions,
while our algorithm could uncover the majority of those sites
(Fig. 5B). It is evident that our method has the potential to generate
additional biological knowledge from ChIP-seq experiments.

4 DISCUSSION
Based on the results described above, we have shown that
our algorithm significantly improves the accuracy of mapping
ambiguous tags. The essential information used by the algorithm
is the association between co-located sequence tags, which was
originally utilized by Faulkner et al. (2008) in the fraction method.
Our contribution to this class of approach is to employ iterative
probabilistic methods to achieve better performance. The use of
likelihood ratios not only reflects the information on sequence
tag associations, but also the background distribution information.
Furthermore, likelihood ratios are not linear to tag counts, but
increase sharply for large tag counts and thus efficiently avoid
wasting signal on sites with small tag counts. The Gibbs sampling
procedure enables us to sample in the space of mapping and
achieve a reasonable assignment of sites to sequence tags. For most
experiments, unique tags are the majority of tags and they can guide
the sampling efficiently. Thus, Gibbs sampling does not require
too much time to reach the final result. We have also shown that
correct mapping of ambiguous tags can facilitate our understanding
of biology by recovering repeated genomic sites which are prone to
produce ambiguous tags.

Although the length of sequence tags is increasing, there will
still be a certain amount of ambiguous tags. As shown in Figure 4,
genomic sites, such as segmental duplications and microsatellites
will always produce ambiguous tags by their nature: with multiple
copies in the genome. So the task of mapping ambiguous tags will
not disappear due to the experimental technique advancements in
short term, and our algorithm provides an efficient way to solve this
problem.
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