
Vol. 29 no. 4 2013, pages 492–493
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/bts722

Genome analysis Advance Access publication January 7, 2013

BroadPeak: a novel algorithm for identifying broad peaks

in diffuse ChIP-seq datasets
Jianrong Wang1, Victoria V. Lunyak2 and I. King Jordan1,3,*
1School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA, 2Buck Institute for Age Research, Novato,
CA 94945, USA and 3PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia

Associate Editor: Michael Brudno

ABSTRACT

Summary: Although some histone modification chromatin immunopre-

cipitation followed by high-throughput sequencing (ChIP-seq) signals

show abrupt peaks across narrow and specific genomic locations,

others have diffuse distributions along chromosomes, and their large

contiguous enrichment landscapes are better modeled as broad peaks.

Here, we present BroadPeak, an algorithm for the identification of such

broad peaks from diffuse ChIP-seq datasets. We show that BroadPeak

is a linear time algorithm that requires only two parameters, and we

validate its performance on real and simulated histone modification

ChIP-seq datasets. BroadPeak calls peaks that are highly coincident

with both the underlying ChIP-seq tag count distributions and relevant

biological features, such as the gene bodies of actively transcribed

genes, and it shows superior overall recall and precision of known

broad peaks from simulated datasets.

Availability: The source code and documentations are available at

http://jordan.biology.gatech.edu/page/software/broadpeak/.

Contact: king.jordan@biology.gatech.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Chromatin immunoprecipitation followed by high-throughput

sequencing (ChIP-seq) technology has been used to produce

genome-wide maps for a variety of histone modifications in a

number of different cell types (Barski et al., 2007; Ernst et al.,

2011; Wang et al., 2008). One of the most critical ChIP-seq data

processing steps is peak calling, i.e. the identification of contigu-

ous genomic regions that are significantly enriched with

ChIP-seq tags when compared with the genomic background

tag count distribution (Park, 2009). Although numerous compu-

tational methods that can reliably identify narrow histone modi-

fication peaks have been developed (Laajala et al., 2009; Park,

2009), there are fewer methods for calling broad peaks (Song and

Smith, 2011; Zang et al., 2009). Here, we describe BroadPeak, a

distinct approach for calling broad peaks in diffuse ChIP-seq

datasets, and apply the algorithm to both real and simulated

datasets to evaluate its performance.

2 METHODS

Algorithm overview: The basic idea of BroadPeak is to assign appropriate

positive scores tohigh-tagsites andnegative scores to low-tagsites (i.e.gaps)

and then to model the broad peaks as segments with maximal cumulative

scores (maximal scoring segments) along chromosomes (Supplementary

Figs S1 and S2). This is an adoption of the maximal-segment algorithm,

which has most often been applied for sequence comparison (Karlin and

Altschul,1993).Inadditiontoprovidinganoptimalsolutionforpeakcalling,

the use of the maximal-segment algorithm has the advantages of requiring

fewer parameters and only linear-time complexity for computation

(SupplementaryMethods and Supplementary Fig. S2).

Problem formulation: The genome under consideration is divided into

small non-overlapping bins of a user-defined size (e.g. 200bp), and each bin

is assigned with a ChIP-seq tag count. The bins are first classified into

high-tag and low-tag bins based on a tag count threshold derived from

the standard tag count Poisson distribution (which is parameterized by

the genomic average bin tag count �). Each high-tag bin is then assigned

with a positive score s1, and each low-tag bin is assigned with a negative

score s2. The cumulative score from bin i to bin j is the sum of the scores of

individual bins between i and j. Maximal scoring segments are segments

with maximal cumulative scores, i.e. the cumulative scores will decrease if

the segments extend to longer segmentsor shrink to shorter segments.Thus,

identifications of maximal scoring segments are equivalent to setting the

boundaries of broad peaks with the locally highest spatial densities of

high-tag bins (Supplementary Fig. S2).

Scoring and parameters: The positive and negative scores described

earlier in the text (s1 and s2) need to be carefully designed to obtain

reasonable peaks. Based on the theorems proved by Karlin and

Altschul (Karlin and Altschul, 1990), the optimal scoring scheme consists

of the log likelihood ratios: s1¼ ln(p/q) and s2¼ ln[(1� p)/(1� q)],

where p is the estimated spatial density of high-tag bins in real broad

peaks and q is the genomic background spatial density. Thus, p and q are

the only parameters needed for BroadPeak. One important feature of this

scoring scheme is that, when the segment lengths are large, the spatial

densities within the resulted maximal scoring segments will approximate

the real target density p (Karlin and Altschul, 1990). This feature theor-

etically supports the validity of the final identified broad peaks, as their

compositions of high-tag bins will resemble real peaks, and it also sug-

gests that the gaps will be adaptively allowed based on the data, namely

the target and background densities.

To accurately estimate the target density p, BroadPeak provides

two options: supervised and unsupervised estimations (Supplementary

Fig. S1). For supervised estimation, the user needs to provide a list of

regions that are enriched with broad peaks based on a priori knowledge

(e.g. highly transcribed gene bodies for H3K36me3 parameter estima-

tion). For unsupervised estimation, BroadPeak first uses a sliding

window approach to obtain an initial set of regions showing spatial

density changes and model the occurrence of high-tag bins as

non-homogeneous Poisson processes with change points (Raftery and

Akman, 1986). Conjugate gamma prior distributions are built, and a*To whom correspondence should be addressed.
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Gibbs sampling algorithm (Robert and Casella, 2004) is applied to esti-

mate p and q (Supplementary Methods).

Peak identification: BroadPeak applies the linear time Ruzzo–Tompa

algorithm (Ruzzo and Tompa, 1999) to search for all maximal scoring

segments (Supplementary Figs S1 and S2). For each maximal scoring

segment, the observed spatial density of high-tag bins is compared with

the background using a z-test, and only the segments with significantly

higher densities (P50.05) are added to the final broad peak list.

3 PERFORMANCE EVALUATION

To evaluate the performance of BroadPeak, we first applied the

algorithm to the analysis of ChIP-seq datasets of histone modifica-

tions from human CD4þ T cells (Barski et al., 2007). Visual inspec-

tion of the called broad peaks shows that they are much consistent

with the underlying diffuse ChIP-seq tag count distributions

(Fig. 1A and B, Supplementary Fig. S3). For H3K36me3 and

H3K79me2, the called broad peaks are also highly coincident

with the locations of gene bodies (Fig. 1A), consistent with their

known roles as marks of transcriptional elongation (Barski et al.,

2007). Closer inspection reveals that the locations of the called peaks

for these two marks relative to gene bodies are distinct; H3K79me2

peaks are enriched at and downstream of transcriptional start sites,

whereas H3K36me3 peaks are enriched upstream and at transcrip-

tional termination sites (Fig. 1C). These results are also consistent

with the known biological roles of these modifications.

Additional biologically relevant results can be seen for the

called H3K27me3 peaks (Fig. 1B). H3K27me3 is thought to

mark repressive chromatin domains, and the edges of the

broad peaks called for this mark are enriched for binding sites

of the CTCF protein (Fig. 1B and D, Supplementary Fig. S4),

which is known to be related to the activity of chromatin insu-
lators and barriers (Cuddapah et al., 2009). Weaker enrichments
are also observed for called broad peaks of the H3K9me3

(Supplementary Fig. S5). Similar performances are shown
when the algorithm is run in supervised and unsupervised
modes for H3K36me3 (Supplementary Methods and Supple-

mentary Fig. S6).
We further evaluate the performance of BroadPeak using three

separate simulated ChIP-seq tag datasets, which correspond to a

set of predefined (i.e. known) broad peaks (Supplementary
Methods). This approach was used to allow for a controlled
comparison of results obtained from BroadPeak versus results

from the existing methods MACS, SICER and RSEG (Song and
Smith, 2011; Zang et al., 2009; Zhang et al., 2008). For each
method tested, the ability to identify known broad peaks from

simulated tag datasets was quantified using precision and recall.
For all three simulated datasets, BroadPeak achieves substantial
improvements on recall (Supplementary Table S1) while main-

taining good precision (albeit slightly lower than seen for MACS
and SICER). Overall, BroadPeak shows the highest value for the
harmonic mean of recall and precision (F score). Finally,

BroadPeak appears particularly well suited for calling large
peaks as can be seen from the more contiguous characterization
of known large peaks from the simulated datasets

(Supplementary Fig. S7) and the relatively broader distribution
of called peak sizes (Supplementary Fig. S8).
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Fig. 1. Performance evaluation of BroadPeak. (A) Examples of broad

peaks of H3K79me2 and H3K36me3 identified by BroadPeak compared

with the underlying ChIP-seq tag counts. (B) Examples of broad peaks of

H3K27me3 identified by BroadPeak and CTCF binding profiles. (C)

Relative distributions of broad peaks of H3K79me2 and H3K36me3

around gene bodies. (D) Enrichments of CTCF bindings around the

edges of large H3K27me3 broad peaks (4200kb)
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