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ABSTRACT

Boundary elements partition eukaryotic chromatin
into active and repressive domains, and can also
block regulatory interactions between domains.
Boundary elements act via diverse mechanisms
making accurate feature-based computational pre-
dictions difficult. Therefore, we developed an
unbiased algorithm that predicts the locations of
human boundary elements based on the genomic
distributions of chromatin and transcriptional
states, as opposed to any intrinsic characteristics
that they may possess. Application of our algorithm
to ChIP-seq data for histone modifications and RNA
Pol II-binding data in human CD4+T cells resulted in
the prediction of 2542 putative chromatin boundary
elements genome wide. Predicted boundary
elements display two distinct features: first,
position-specific open chromatin and histone
acetylation that is coincident with the recruitment
of sequence-specific DNA-binding factors such as
CTCF, EVI1 and YYI, and second, a directional and
gradual increase in histone lysine methylation
across predicted boundaries coincident with a
gain of expression of non-coding RNAs, including
examples of boundaries encoded by tRNA and
other non-coding RNA genes. Accordingly, a
number of the predicted human boundaries may
function via the synergistic action of sequence-
specific recruitment of transcription factors
leading to non-coding RNA transcriptional interfer-
ence and the blocking of facultative heterochro-
matin propagation by transcription-associated
chromatin remodeling complexes.

INTRODUCTION

Eukaryotic chromosomes are functionally organized into
alternating active and repressive chromatin domains,

referred to as euchromatin and heterochromatin respect-
ively (1,2). Active chromatin domains are characterized by
histone modifications that facilitate gene expression via
the opening of chromatin, which provides transcription
factors access to genomic DNA, whereas repressive
domains are enriched with histone modifications that
yield more tightly compact and less accessible chromatin
leading to the repression of gene expression (3–9).
Accordingly, the establishment and maintenance of
distinct chromatin domains has important implications
for gene regulation specific to cellular development and
function (10,11).
The organization of eukaryotic chromatin into func-

tionally distinct domains implies the existence of chroma-
tin partitioning elements that can be used both to delineate
active euchromatic and repressive heterochromatic
domains, while preserving their structural integrity, and
to prevent regulatory cross talk between different
domains (12–15). Such chromatin partitioning elements
do in fact exist and they are known as ‘boundary
elements’ (16–18). Boundary element functionality is
characterized by two fundamental properties: (i) the
ability to protect from chromosomal position effects by
acting as barriers against the self-propagation of repres-
sive chromatin (16,19,20) and (ii) the ability to insulate or
block regulatory interactions between distal enhancers
and proximal gene promoters (15,21,22). Some boundary
elements are able to act both as chromatin barriers and
enhancer blocking insulators (18,23). Boundary elements
that are cell type-specific help to establish alternating fac-
ultative, as opposed to constitutive, euchromatic and het-
erochromatic domains.
Known boundary elements are diverse, and several dif-

ferent mechanisms of boundary element activity have been
uncovered. First, fixed boundary elements consist of
specific DNA sequences and their associated proteins,
which establish boundaries with well defined positions.
Such precisely located boundaries are thought to form
discrete physical barriers that partition distinct chroma-
tin and/or regulatory domains. For example, the
HS4 boundary element found upstream of the chicken
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b-globin locus is bound by the CCCTC-binding factor
(CTCF), a well known vertebrate insulator associated
protein with demonstrated enhancer blocking activity
(24,25). The scs/scs0 elements in Drosophila provide
fixed boundaries at the heat-shock domain locus
(19,22,26), and the chromatin barrier activity of the
scs/scs0 boundaries is dependent upon the binding of two
protein factors Zw5 and BEAF (27).
Second, there are variable boundary elements that do

not occupy specific DNA sequences or genomic locations.
These variable boundaries are thought to be established
and maintained through a dynamic balance of colli-
sions between opposing chromatin modifying enzyme
complexes responsible for the formation of euchromatin
on one side of the boundary and heterochromatin on the
other (28,29). For example, the phenomenon of position
effect variegation (PEV) in Drosophila can be attributed
to variable boundary elements (13,30). PEV refers to the
variegated expression of genes located between adjacent
euchromatic and heterochromatic domains. PEV occurs
due to the changing locations of variable boundaries
between cells, which result in genes being located in
alternating euchromatic or heterochromatic environments
in different cells.
Third, boundary element activity can depend upon tran-

scriptional interference from small non-protein-coding
transcriptional units, such as tRNA genes in yeast
(20,31–34) or tRNA-derived SINE retrotransposons in
mouse (18,35). Boundary elements that function via tran-
scriptional interference contain specific sequence features
needed to recruit transcription factors (e.g. the Pol II and
Pol III machineries), and they may also provide a physical
barrier to the propagation of heterochromatin via nucleo-
somal gaps close to transcription start sites. These nucleo-
somal gaps may also serve as entry sites for chromatin
remodeling complexes that help to establish the
boundaries (14,31).
Thus, many of the currently known boundary elements

have been defined functionally, based on experimental
confirmation of their activity, rather than categorically
based on the presence of well defined features. Indeed,
as detailed above, there are diverse mechanisms that
underlie boundary element activity and no common
sequence or protein features that unite all known
boundaries. This lack of common boundary element
features makes comprehensive prediction of boundaries
difficult. To date, boundary element prediction methods
have relied on specific features to identify mechanistically
coherent subsets of boundaries. For example,
genome-wide distributions of CTCF-binding sites con-
sidered together with chromatin domain borders have
been used to infer the locations of putative fixed
boundaries (36,37). This feature-based approach to
boundary element prediction may overlook boundaries
that function via diverse and possibly as yet unknown
mechanisms.
Recently, a number of genome-wide maps of histone

modifications have been computationally analyzed in
order to describe chromatin architecture in terms of the
distribution of distinct domains within and between cell
types. For instance, studies in Drosophila melanogaster

(38,39), Caenorhabditis elegans (40) and human (41,42)
have characterized the genomic distributions of euchro-
matic and heterochromatic domains at high levels of
resolution. The ability to characterize chromatin domain
distributions in this way suggests that it should also be
possible to more precisely define the locations of
putative chromatin boundaries between domains along
with their local properties. To address this issue here, we
employed a computational analysis of histone modifica-
tion maps in human CD4+T cells. To date, CD4+T cells
represent the single best characterized system for studying
chromatin architecture as there exist genome-wide maps
for 38 histone modifications and one histone variant
(36,43). The existence of multiple (five) repressive modifi-
cations, in particular, is a unique aspect of this data set
that provides increased resolution for delineating active
versus repressive domains. Furthermore, experimentally
characterized genome-wide maps of chromatin accessibil-
ity (DNase I hypersensitive sites), binding sites for RNA
Pol II and Pol III as well as several other protein factors
exist for CD4+ T cells along with RNA-seq data for
genome expression.

The goal of this study was to take advantage of the
detailed genome-wide chromatin maps that exist for
CD4+ T cells in order to predict and analyze a collection
of putative human boundary elements that is unbiased
with respect to the mechanisms of boundary activity.
Such a set of predicted boundary elements could help to
prioritize experimental interrogation of boundaries and
further define the scope of possible boundary element
mechanisms. To this end, we developed a boundary
element prediction algorithm that does not rely on any
previously characterized features of boundary element
sequences, such as the binding of specific protein factors
(e.g. CTCF), the presence of tRNA or tRNA-derived
sequences or the expression of non-coding RNAs.
Rather, our approach defines the genomic positions
of putative boundaries in cell type-specific manner based
solely on the locations of transition points between facul-
tatively active (euchromatic) and repressive (hetero-
chromatic) domains, along with the distributions of
Pol II-binding sites. We chose this objective approach to
avoid biasing our boundary element predictions with
respect to a limited set of previously known features,
and more importantly, to allow for the opportunity to
discover boundary elements that may operate via novel,
previously unreported mechanisms of action. Boundary
element prediction proceeded in two steps. First, we
defined euchromatic and heterochromatic domains based
on the distributions of active versus repressive histone
modifications, and the regions between adjacent domains
were taken as possible locations for boundary elements.
Second, the regions between chromatin domains were
further analyzed with respect to the distributions of
Pol II-binding sites to more precisely locate putative
boundaries.

Application of this two-stage chromatin boundary
element prediction algorithm to human CD4+T-cell chro-
matin data resulted in the prediction of 2542 cell
type-specific boundary elements genome wide. The func-
tional relevance of the predicted boundaries, with respect
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to facultative chromatin and cell type-specific expression,
was supported by the finding that pairs of genes
immediately flanking the boundaries are more divergently
expressed in CD4+ T cells than in other human cells.
Feature analysis of the predicted human boundaries
suggests the possibility of several novel and distinct
modes of action: (i) predicted boundaries show a distinct
local chromatin environment including peaks of open
chromatin marked by enrichment for numerous histone
acetylations. These results suggest that the establishment
of boundaries involves the local action of specific chroma-
tin remodeling proteins, (ii) while many of the predicted
boundaries are shown to be bound by the well known
insulator protein CTCF, there are a number of boundaries
that may function in a CTCF-independent manner via the
binding of protein factors that are known to function in
chromatin remodeling but were not previously implicated
in boundary activity, e.g. EVI1 and YY1, (iii) a number of
predicted boundaries show evidence for the action of tran-
scriptional interference including examples of putative
tRNA derived boundaries. tRNA genes were previously
shown to function as boundaries in yeast (20,31–33)
but these are the first examples of putative tRNA
derived boundaries in human.

MATERIALS AND METHODS

Datasets of histone modifications and Pol II
binding in CD4+ T cells

We used publicly available genome-wide ChIP-seq data
for 38 histone modifications and one histone variant
(H2A.Z) defined in human CD4+ T cells (36,43).
These 39 histone modifications are classified into active
histone modifications and repressive histone modifica-
tions, based on previous results (43), for use in chromatin
domain prediction. Active modifications are positively
correlated with gene expression levels and are known to
mark euchromatic genomic regions, whereas repressive
modifications are negatively correlated with expression
levels and mark heterochromatic domains. The 34 active
modifications used here are: H2BK5ac, H2BK12ac,
H2BK20ac, H2BK120ac, H2AK5ac, H2AK9ac, H2AZ,
K3K4ac, H3K9ac, H3K14ac, H3K18ac, H3K23ac,
H3K27ac, H3K36ac, H4K8ac, H3K12ac, H4K5ac,
H4K16ac, H4K91ac, H2BK5me1, H3K4me1, H3K4me2,
H3K4me3, H3K9me1, H3K27me1, H3K36me1,
H3K36me3, H3K79me1, H3K79me2, H3K79me3,
H3R2me1, H3R2me2, H4K20me1 and H4R3me2. The
five repressive modifications are: H3K9me2, H3K9me3,
H3K27me2, H3K27me3 and H4K20me3. Genome-wide
ChIP-seq data for Pol II binding in CD4+ T cells was
also obtained from Barski et al. 2007 (36).

General scheme of chromatin boundary element
prediction algorithm

In order to predict chromatin boundary elements in CD4+

T cells, we designed a two-stage algorithm (Figure 1A).
First, we employed active versus repressive histone modi-
fication distribution information to define the locations
of large-scale euchromatic and heterochromatic domains,

respectively (Figure 1B). Regions in transitions (RIT)
between adjacent euchromatic and heterochromatic
domains are taken as possible locations containing chro-
matin boundary elements. Second, we predicted the
specific locations of boundary elements using Pol II
binding inside RITs. Boundary elements were taken as
8-kb windows flanking the precise transition points
between high versus low Pol II-binding regions. Only
RITs with one such Poll II transition point were con-
sidered to contain unambiguous boundary elements.
Details for each stage of the algorithm are provided below.

Domain localization with a maximal-segment algorithm

Histone modifications were characterized as active versus
repressive based on their correlation with gene expression
levels as previously described (43). All active modifications
were then considered together as a single set for subse-
quent analysis as were all repressive modifications.
In order to infer heterochromatic domains, we set a
positive score for each genomic location, which has repres-
sive histone modification ChIP-seq tags and a negative
score for each location with active modification tags.
The tag counts of repressive and active modifications
were further classified as small (�8 tags), medium
(>8 tags and �15 tags) and large (>15 tags). Based on
Karlin’s theorems (44), the scores for individual genomic
sites are set as sij ¼ lnð

pij
qij
Þ, where i={repressive, active}

and j={small, medium, large}. pij represents the
estimated frequency of the specific kind of sites in real
heterochromatin domains, and qij represents the genomic
background frequency of the specific kind of sites.
Intuitively, in heterochromatic domains, the frequency
of repressively modified sites is higher than the genomic
frequency of repressively modified sites and the corres-
ponding scores are positive and larger for sites with
more tags. Likewise, the scores for actively modified
sites are negative. We use the peri-centromeric regions to
estimate pij, since peri-centromeric regions are believed to
be heterochromatic regions. Peri-centromeric regions are
defined as the regions on both sides of centromeres extend-
ing to the most proximal gene as previously described (45).
After the scoring step, we applied the maximal-segment
algorithm (46) to detect contiguous genomic regions
with local maximal cumulative scores. Such contiguous
regions represent domains that are enriched with repres-
sive histone modifications, i.e. heterochromatic domains
(Figure 1B). As previously suggested (1), we removed
the candidate heterochromatic domains that are <10 kb.
This cutoff was chosen to reflect the fact that domains, by
definition, are thought to be broad and widely spread,
and relatively short genomic regions <10 kb are more
likely to represent discrete regulatory elements than bona
fide domains. The remaining inferred heterochromatic
domains were used in subsequent steps.
In order to infer euchromatic domains, we set positive

scores for actively modified sites and negative scores for
repressively modified sites, and the other steps were the
same as described for inference of heterochromatic
domains. As with heterochromatic domains, predicted
euchromatic domains <10 kb were eliminated from
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further consideration. In order to estimate the frequency
of actively modified sites in real euchromatic domains, we
used the histone modification data for the top 5% of genes
that are most highly expressed in CD4+ T cells (47)
assuming those genes must be inside euchromatic regions.
After obtaining heterochromatic domains and euchro-

matic domains in this way, we define a list of RITs
between adjacent heterochromatic and euchromatic
domains. All possible boundary elements should reside
within RITs, but it is not necessary that every RIT
contains a boundary element. The next step in the algo-
rithm narrows down these RITs to more precisely define
the location of putative boundary elements.

Boundary element localization with a hidden
Markov model

In order to more accurately predict specific chromatin
boundary element locations within RITs, we took advan-
tage of the fact that euchromatic regions have higher Pol
II-binding signal levels than heterochromatic regions.
We built a two-state hidden Markov model (HMM) on
Pol II-binding data, and employed the Viterbi algorithm
to find the most possible hidden state chain (Figure 1C).
The two states in this chain are heterochromatin and
euchromatin respectively. The emission probabilities of

the Pol II signal in euchromatic regions are estimated
based on Pol II data in genes which are the top 5%
most highly expressed in CD4+ T cells, and the emission
probabilities of Pol II signal in heterochromatic regions
are estimated based on Pol II data in genes which are not
expressed (the lowest 5%). The total size of heterochro-
matic domains is denoted as s1 and the total size of eu-
chromatic domains as s2. The total size of RITs that go
from heterochromatin to euchromatin is denoted as t12,
and the total size of RITs that go from euchromatin to
heterochromatin as t21. Then the transition probability
from heterochromatin to euchromatin is estimated as

t12
ðt12+s1Þ

, and the transition probability from heterochroma-
tin to heterochromatin is estimated as s1

ðt12+s1Þ
. The transi-

tion probability from euchromatin to heterochromatin is
estimated as t21

ðt21+s2Þ
, and the transition probability from

euchromatin to euchromatin is estimated as s2
ðt21+s2Þ

.

After running the Viterbi algorithm over all RITs, we
recorded the most probable hidden state chains for each
RIT. Transition points from one state to the other were
taken as possible boundary element locations. To avoid
bivalently modified regions and to eliminate small scale
variations in Pol II binding, boundary elements were
only predicted for RITs that show a single transition
point in the hidden state chain. Since boundary elements

Figure 1. Boundary element prediction algorithm scheme. (A) Pipeline of the boundary element prediction algorithm. (B) Scheme of domain
prediction: repressive modifications (R) and active modifications (A) at each genomic site are transformed to positive or negative scores.
A maximal-segment algorithm is then applied on the score strings to locate contiguous regions with local maximal cumulative scores; such
regions correspond to euchromatic or heterochromatic domains. (C) Scheme of the HMM for boundary element prediction. The two hidden
states are heterochromatin and euchromatin. Each state is characterized by distinct emission probabilities of low, medium and high Pol
II-binding levels.
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may be expected to contain a combination of multiple
regulatory elements around the precise transition points,
putative boundary elements were taken as 8 kb regions
around the exact transition points.

DNase I hypersensitivity analysis

Genome-wide DNase I hypersensitivity data in human
CD4+ T cells were taken from (48). The genomic loca-
tions of DNase I hypersensitive sites are transformed
to NCBI36/hg18 using the UCSC Genome Browser
program Liftover (49,50). To check whether the predicted
boundary elements are more DNase I hypersensitive than
flanking regions on average, we extended the predicted
boundary elements by 8-kb upstream and downstream and
divided the extended regions into 1-kb non-overlapping
bins. For each bin, we calculated the average DNase I
hypersensitive scores and normalized them by the
genomic average DNase I hypersensitive scores.

Histone modification signature analysis

Tag counts for each individual histone modification were
computed for predicted boundary elements extended by
8-kb upstream and downstream. Extended regions were
divided into 1-kb non-overlapping bins, and for each
bin, the average tag counts are normalized by genomic
averages.

Analysis of CTCF binding

Genome-wide ChIP-seq data for CTCF binding in
human CD4+T cells were taken from (36). We only con-
sidered locations with more than five tags as reliable
CTCF-binding sites. To check whether predicted
boundary elements have higher affinity to CTCF binding
than flanking regions on average, we extended the pre-
dicted boundary elements by 8-kb upstream and down-
stream and divided the extended regions into 1-kb
non-overlapping bins. For each bin, we calculated the
average CTCF tag counts and normalized them by the
genomic average CTCF tag count for 1-kb regions.

TFBS analysis

In order to look for putative protein factors associated
with predicted chromatin boundary elements, we used
the ‘TFBS Conserved’ track from the UCSC Genome
Browser. We gathered those computationally predicted
conserved TFBS (with Z-score >1.96) inside predicted
boundary elements. For each transcription factor, we
counted the number of its appearance within boundary
elements and statistically tested whether the specific tran-
scription factor is significantly associated with boundary
elements using the hypergeometric test.

Boundary element transcription analysis

RNA-seq data of transcription in human CD4+ T cells
were taken from (51). We extended the putative chromatin
boundary elements by 8-kb upstream and downstream
and divided them into 1-kb non-overlapping bins.
We calculated the average non-protein-coding RNA-seq
tag counts for each bin and normalized them by the

genomic average tag counts. The data was then log2 trans-
formed. Predicted boundary elements were classified into
two groups: boundaries containing RNA genes and
boundaries without RNA genes, and the above calcula-
tions were done on the two groups of boundaries separ-
ately. The annotations of RNA gene locations are from
the ‘RNA gene’ track (52,53) on UCSC Genome Browser.

Gene expression analysis

Gene expression profiles were taken from (47). For genes
located within predicted euchromatic domains and hetero-
chromatic domains, we calculated their average expression
levels in human CD4+ T cells. For each predicted
boundary element, we took the two genes most proximal
to it on the two opposite sides (the euchromatic side and
the heterochromatic side) and calculated the expression
differences between these pairs for CD4+ T cells and for
all other tissues together.

Gene function annotations

Gene Ontology (GO) analysis and KEGG pathway
analysis were performed using MSigDB (54,55) for
predicted euchromatic domains with high gene densities
(>1 gene/20 kb).

RESULTS

Datasets and chromatin boundary element prediction
algorithm

In recent years, a substantial body of data detailing the
chromatin structure of eukaryotic genomes has been
accumulated. For the human genome in particular, there
are now genomic maps with experimentally characterized
locations of numerous histone modifications as well as
binding sites for a variety of proteins. Such data provide
opportunities for the discovery of novel chromatin related
regulatory elements across the genome.
Human CD4+ T cells represent one of the best

characterized systems for the genome-scale analysis of
chromatin. Keji Zhao and colleagues have used chroma-
tin immunoprecipitation followed by high-throughput
sequencing experiments (ChIP-seq) to generate
genome-wide maps for 38 histone modifications and one
histone variant (H2A.Z), CTCF binding, Pol II binding
and Pol III binding (36,43,51). Chromatin accessibility in
CD4+T cells has been evaluated genome wide using DNase
I hypersensitivity assays coupled to high-throughput
sequencing (48), and genome-wide CD4+T cell expression
levels have been determined using microarray and
RNA-seq technologies (47,51).
We took advantage of the existence of these

genome-scale chromatin datasets to facilitate the discov-
ery of boundary elements in the human genome. The goal
of this work was to provide a comprehensive list of likely
boundary element candidates, and then to evaluate the
features of these putative boundaries with respect to
possible mechanisms of action. We designed a two-stage
algorithm to predict the locations of putative boundary
elements (Figure 1A). In the first stage, we defined the
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locations of large-scale active (euchromatic) and repres-
sive (heterochromatic) chromatin domains based on the
genomic distributions of active and repressive histone
modifications. The histone modifications analyzed here
were characterized active or repressive as previously
described (see ‘Materials and Methods’ section) (43).
For each genomic position, a specific score (negative or
positive) was assigned according to the relative abundance
of active or repressive modifications. A maximal-segment
algorithm was then applied to the resulting string of scores
to locate contiguous genomic regions with maximal local
cumulative scores (Figure 1B). The maximal-segment
algorithm was chosen because it can detect such contigu-
ous regions over variant lengths, and it is robust
to small-scale stochastic noise in the ChIP-seq data.
The maximal-segment algorithm also worked well here
because the parameters that define the relative negative
or positive scores can be directly estimated from the
ChIP-seq data. Further details on our maximal-segment
algorithm for domain detection can be found in the
‘Materials and Methods’ section (see Domain localization
with a maximal-segment algorithm).
We searched for chromatin boundary elements that

reside within regions between adjacent euchromatic and
heterochromatic domains—hereafter referred to as RITs.
However, it should be noted that not all RITs will neces-
sarily contain discretely located boundary elements.
For instance, some RITs may contain regions with fuzzy
patterns of active and repressive modification distribu-
tions that would not allow for precise delineation of
boundary element locations. Such fuzzy patterns may
represent boundaries that act via PEV-related mechan-
isms, owing to different boundary locations among
heterogeneous cell populations, and these imprecisely
located boundaries will not be detected by our method.
Furthermore, because the sizes of RITs can be relatively
large (>50 kb) in some cases, a method is needed to
narrow down the genomic regions where predicted
boundary elements can be located. In light of both of
these issues, we developed a second stage of the algorithm
that uses a HMM of Pol II-binding distributions along
RITs in order to more precisely locate boundary
elements (Figure 1C). This approach is based on the
rationale that euchromatin is transcriptionally active,
whereas heterochromatin is largely transcriptionally
silent. Accordingly, euchromatin is expected to have
higher levels of Pol II binding, and heterochromatin is
expected to have lower levels of Pol II binding.
Furthermore, Pol II protein complexes are known to
associate with proteins that have acetyltransferase and/
or chromatin remodeling functions (56). Thus, boundary
elements are expected to be located in genomic regions
with particularly sharp transitions between low and high
Pol II binding; HMMs are ideal for delineating such
abrupt transitions.
HMMs were used to model RITs by predicting the

facultative chromatin state—euchromatin or heterochro-
matin—for each genomic site that best explains the
Pol II-binding distribution along each RIT. To do this,
the Viterbi algorithm was used to infer the most
probable chromatin state chain along the RITs based on

Pol II-binding emission probabilities and chromatin state
transition probabilities (Figure 1C). Details on the HMM
we used for boundary element localization can be found in
the ‘Materials and Methods’ section (see Boundary
element localization with a HMM). After obtaining the
most probable hidden state chains of euchromatin and
heterochromatin, we removed RITs that contain more
than one transition point between the two chromatin
states, since these represent ambiguously located
boundaries. Sequence features of the remaining RITs are
summarized in Supplementary Table S1. For RITs with
single chromatin state transition points, we take 8-kb
regions centered on those transition points as putative
boundary element regions (Supplementary Files S1
and S2). The 8-kb window size was chosen to strike a
balance between the utility of precisely locating predicted
boundary elements and the biological reality that
boundary element activity may be spread over multiple
adjacently located regulatory elements.

Chromatin domain localization

In the first stage of the algorithm (Figure 1B), we pre-
dicted the locations of large-scale active and repressive
chromatin domains, i.e. facultative euchromatic and
heterochromatic regions. An example of several adjacent
euchromatic and heterochromatic domains on chromo-
some 2 can be seen in Figure 2. The predicted euchromatic
domains are enriched with the active histone modification
H3K79me1, and the predicted heterochromatic domains
are enriched with the repressive modification H3K27me2.
The same pattern can be seen when all 34 active and
all 5 repressive modifications are considered together
(Supplementary Figure S1). In this example, we also
observe higher Pol II binding and RNA-seq expression
levels in the predicted euchromatic domains than seen
for the predicted heterochromatic domains (Figure 2),
consistent with the expectation that euchromatin is more
actively transcribed than heterochromatin. Furthermore,
predicted euchromatic domains genome wide have signifi-
cantly higher average CD4+ T cell expression levels
than the predicted heterochromatic domains (Figure 3;
Mann–Whitney U test P< 1E–10). The observations on
expression levels serve to validate the maximum segment
algorithm we use to delineate active (euchromatic) and
repressive (heterochromatic) domains based on the
analysis of histone modification data alone.

We also used GO and KEGG pathway analyses to in-
terrogate the functional relevance of the euchromatic and
heterochromatic domains predicted with our algorithm.
Genes found in predicted euchromatic domains are
enriched with functional terms and pathways related to
CD4+ T cell functions, such as defense response (GO),
systemic lupus erythematosus (KEGG) and antigen
processing and presentation (KEGG) (Supplementary
Table S2).

Boundary element prediction

Application of the two-stage maximal segment algorithm
and HMM approach (Figure 1) to the CD4+ T cell
ChIP-seq data resulted in the identification of 2542
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putative chromatin boundary elements (Supplementary
File S2). Sequence features of these boundary elements
are summarized in Supplementary Table S1. It should be
noted that our prediction method is not mechanistically
biased in the sense that it does not rely on any previously
known features of boundary element sequences, e.g.
CTCF protein binding (37,57), the presence of tRNA
genes (31) or the expression of non-coding RNAs
originating from SINE repeats (18,35). By predicting
boundaries in this way, without regard to previously
known features, we can evaluate the associations of
putative boundaries with such features a posteriori and,
more importantly, look for novel boundary element
related features, which may be indicative of as yet
unknown boundary element mechanisms.

Examples of three predicted chromatin boundaries are
shown in Figure 4; the locations of the boundaries are
compared to the locations of the chromatin domains
defined by active and repressive histone modification
distributions along with the locations of CTCF binding,
Pol II binding and RNA-seq expression levels. All of these
boundaries are located close to the edges of borders
between adjacent chromatin domains and at sharp
transition points of Pol II binding and RNA-seq levels.

The two boundaries shown in Figure 4A are co-located
with CTCF-binding sites. The boundary shown in
Figure 4B shows a similar chromatin profile to those in
Figure 4A but is not related to CTCF binding. More
detailed illustrations of these boundaries showing all of
the individual histone modifications can be found in
Supplementary Figures S2 and S3.
In order to test the relevance of the predicted chromatin

boundaries to facultative chromatin and cell type-specific
gene regulation, we compared the expression level
differences for pairs of genes located on immediately
opposing sides of the boundaries for CD4+ T cells to
their expression level differences among a set of 78 differ-
ent human tissues and cell types (47). If the predicted
boundary elements do in fact represent CD4+ T cell
specific regulatory elements that help to establish
facultative chromatin domains, then the expression
level differences of gene pairs that flank the boundaries
should be greater for CD4+ T cells than for other
tissue-types. Consistent with this expectation, gene pairs
that flank the predicted boundaries have significantly
greater expression level differences in CD4+ T cells than
in other tissues and cell-types (Figure 5; Mann–Whitney U
test P< 1E–10).

Figure 2. Example of predicted chromatin domains. An ideogram of chromosome 2 shows the cytogenetic banding pattern along with the location
of this specific example. The distributions of ChIP-seq tag mapping peaks for the active histone modification H3K79me1 (red bars), the repressive
histone modification H3K27me2 (blue bars), Pol II binding (black bars) and RNA-seq tags (purple bars) are shown in separate tracks. The predicted
euchromatic domains (red bands) and heterochromatic domains (blue bands) are shown in the tracks denoted as ‘Euchromatin’ and
‘Heterochromatin’. The locations of RefSeq Genes are shown below the chromatin domains.
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In an attempt to further evaluate the potential func-
tional significance of the boundaries predicted here,
we searched for overlaps between the predictions and pre-
viously experimentally characterized boundaries. Among
the few known boundaries that have been functionally
verified, only one boundary element, the BEAD-1
element, was identified in human T cells. BEAD-1 is a
�2-kb region located between the divergently transcribed
Vd3 and TEA gene segments within the T cell receptor a/d
locus, and it has been shown to have enhancer-blocking
activity (58). BEAD-1 is located within a RIT defined by
our algorithm and overlaps one of the predicted boundary
elements (Figure 6 and Supplementary Figure S4).
Previously, the BEAD-1 sequence was shown to have a
CTCF-binding site and its enhancer blocking activity was
found to be CTCF dependent in an erythroleukemia cell
line (59). However, there is no evidence for CTCF binding
of BEAD-1 from the genome-wide ChIP-seq analysis of
CD4+ T cells (36) suggesting that boundary element

activity at this locus may be CTCF independent in some
conditions.

Chromatin features of predicted boundaries

The boundary element predictions reported here are based
solely on chromatin states inferred from histone modifica-
tions and Pol II binding and do not rely on any previously
characterized features of boundary element sequences.
Since boundary elements are known to have diverse mech-
anisms of action (13,14,60,61), we analyzed our predicted
boundaries for enrichment with a number of previously
characterized boundary features and also with respect to
as yet unknown features that may suggest novel mechan-
isms of boundary element activity.

We evaluated the chromatin environment of predicted
boundaries using enrichment analysis of a number of
genome-scale chromatin data sets. To do this, the 2542
predicted boundary element regions were co-oriented
and center aligned in such a way as to observe 8-kb
boundary element regions flanked by 8-kb heterochromat-
ic and euchromatic regions respectively. Predicted
boundary elements show marked enrichment for DNase
I hypersensitivity consistent with an open chromatin en-
vironment (Figure 7A). Twelve histone acetylation marks
all show similar peaked patterns of enrichment over pre-
dicted boundaries compared to flanking heterochromatic
and euchromatic regions, suggesting that the predicted
boundary elements are specifically acetylated to facilitate
opening of the chromatin and recruitment of
sequence-specific DNA-binding factors (Figure 7B).

Levels of binding for the CTCF insulator protein are
also elevated in predicted boundary element regions
compared to adjacent heterochromatic and euchromatic
regions (Figure 7C). Thus, the apparent acetylation
activity at predicted boundary elements may be recruited
by specific protein factors such as CTCF. The importance
of CTCF in establishing chromatin regulatory domains
recently was underscored by results indicating that
numerous functional CTCF-binding sites are constitutive-
ly occupied among different cell types, and more remark-
ably, conserved among syntenic regions in the human,
mouse and chicken genomes (62). However, it should
be noted that only a minority of predicted boundary
elements (777 or 30.6%) contain CTCF-binding sites
(Supplementary File S3), suggesting that at some of the
predicted boundaries acetylation events occur in a CTCF
independent manner or may be indicative of the recruit-
ment of different DNA-binding factors.

We used the conserved TFBS data from the UCSC
Genome Browser (49,50) to search for protein-binding
sites that are significantly enriched among the set of pre-
dicted chromatin boundaries (Supplementary File S4).
There are a number of significantly enriched TFBS that
interact with proteins directly or indirectly involved in
chromatin remodeling events (Table 1). For example,
EVI1, CEBP, CREBP1, USF and YY1 are all involved
in chromatin remodeling via their interactions with chro-
matin modifying enzymes such as HAT, HDAC and
HMT (63–69). In addition, the transcription factor USF
has previously been implicated as mediating chromatin

Figure 3. Validation and analysis of predicted chromatin domains. (A)
Average human CD4+ T cell expression levels for genes located in
predicted euchromatic domains (gray bar) and heterochromatic
domains (black bar). (B) Average RNA-seq tags per site in CD4+ T
cell for predicted euchromatic domains (gray bar) and heterochromatic
domains (black bar).
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Figure 4. Examples of predicted chromatin boundary elements. (A) Examples of predicted boundary elements with CTCF binding. (B) Example of a
predicted boundary element without CTCF binding. The predicted boundary elements are shown as green bands. ChIP-seq peaks for active and
repressive histone modifications, CTCF binding, Pol II binding and RNA-seq tags along with the locations of euchromatic domains, heterochromatic
domains and RefSeq genes are illustrated as separate tracks (as in Figure 2).

Nucleic Acids Research, 2012, Vol. 40, No. 2 519

 at G
eorgia Institute of T

echnology on February 22, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


boundary element activity (70,71). The presence of distinct
TFBS often overlap at individual boundaries indicating
that a number of predicted boundaries have common
binding sites (Supplementary Figure S5).
Inferences on protein binding based on the presence of

TFBS are prone to false positives (although the use of
conserved sites greatly mitigates this possibility) and also
do not yield information on cell type-specific binding. For
these reasons, we searched for ChIP-seq data sets from
CD4+ T cells to validate the TFBS observed to be
enriched at our predicted boundaries with experimentally
characterized cell type-specific binding events. There are
CD4+T cell ChIP-seq data for YY1 (72), and analysis of
these data reveal that the predicted boundaries are signifi-
cantly overrepresented for YY1 binding (n= 918;
P� 10�16 hypergeometric test), and YY1-binding peaks
at boundaries relative to adjacent chromatin (Figure 7D
and Supplementary File S5). Interestingly, there are far
more boundaries bound by YY1 (n= 918) than
boundaries with conserved YY1 TFBS (n= 157). This
may be due to the presence of lineage-specific or
non-canonical YY1-binding site motifs among the pre-
dicted boundaries. Consistent with observations that
YY1 is a cofactor of CTCF for X-chromosome inactiva-
tion (73), there is a highly significant overlap between
boundaries bound by CTCF and YY1 (n= 534;
P� 10�113 hypergeometric test) suggesting the possibility
of synergistic action between these two factors.
Nevertheless, there remain 384 boundaries with YY1
binding only suggesting CTCF-independent mechanisms

of action. For example, evidence showing that YY1 can
interact with both HDAC and HAT (74–80) led to a po-
tential model proposing that YY1 can activate or repress
transcription via changing the local chromatin environ-
ment (78). YY1 was also shown to be able to interact
with components of nuclear matrix (81,82), which may
also facilitate partitioning of active and repressive chro-
matin domains.

The specific methylation status, mono- di- or
tri-methylation, of the H3K27 and H3K9 histone marks
show divergent trends across predicted boundary elements
containing regions and adjacent heterochromatic and eu-
chromatic regions (Figure 7E and F). H3K27 and H3K9
mono-methylation (H3K27me1 and H3K9me1) levels
increase steadily from facultative heterochromatic
domains across boundary element containing regions
and into euchromatic domains. On the other hand, di-
and tri-methylation of the same residues (H3K27me2,
H3K27me3, H3K9me2 and H3K9me3) gradually
decrease from heterochromatin through the boundary
element regions to euchromatin.

A number of other histone methylation marks, along
with non-protein-coding RNA-seq accumulation, also
show steadily increasing levels across boundary element
regions from facultative heterochromatin to euchromatin
(Figure 8A and B), consistent with a gradual opening of
the chromatin. However, all of the modifications of
histone H3K4 analyzed here (H3K4me1, H3K4me2,
H3K4me3 and H3K4ac) show distinct peaks over the pre-
dicted boundaries relative to flanking heterochromatic
and euchromatic regions (Figure 8C). These particular
histone modifications have been associated with
promoter and/or enhancer activity, suggesting that
boundary element mechanisms may be related to initiation
of transcription (14), in the case of promoters, and/or per-
turbation of the local chromatin environment, as has been
suggested for enhancers (13). The enrichment profiles of
all histone modifications could be found in Supplementary
Figures S6, S7 and S8.

Transcriptional interference at predicted boundaries

Transcription of non-coding RNA has been shown to be
important for boundary element function from yeast to
higher eukaryotes (18,31,32,35). Therefore, we analyzed
RNA-seq data from CD4+ T cells in order to evaluate
whether our predicted boundaries are transcriptionally
active (51). Across the predicted boundary elements,
RNA-seq levels increase steadily with the transition from
heterochromatin (low levels) to euchromatin (high levels)
(Figure 8B). Interestingly, a subset of 77 predicted
boundary elements contain annotated non-coding
RNA genes (52,53) and show distinct peaks of RNA accu-
mulation relative to the adjacent chromatin domains
(Figure 9A), which coincide with Pol III binding
(Figure 9B). The RNA-seq peaks indicate that these par-
ticular boundary locations are transcribed at markedly
higher levels than genomic background consistent with a
role for transcriptional interference.

Figure 9C shows an example of a predicted boundary
element that contains a cluster of four tRNA genes along
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Figure 5. Expression differences between gene pairs that flank
boundary elements. Expression differences of gene pairs located on
immediately opposing sides of predicted boundary elements are
shown for CD4+ T cells (gray bar) and 78 other human tissues
together (black bar).
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with peaks of RNA-seq expression and Pol III and CTCF
binding, suggesting a possible relationship between CTCF
binding and tRNA gene transcription. The example
shown in Figure 9C suggests that, similar to yeast,
tRNA genes in the human genome may operate as

genomic boundaries, although definitive assessment of
their functional significance awaits further experimental
analysis. Consistent with this prediction, clusters of
mouse tRNA genes have been shown to encode chromatin
barrier activity (83).

Figure 6. Co-location of a predicted boundary element with BEAD-1. A boundary element predicted by our method (green band) is shown to
overlap with the experimentally characterized BEAD-1 boundary element (purple band). The BEAD-1 element is located between the Vd3 and TEA
gene segments (black boxes) of the T cell receptor a/d locus. ChIP-seq peaks for active and repressive histone modifications, CTCF binding, Pol II
binding and RNA-seq tags along with the locations of euchromatic domains, heterochromatic domains are illustrated as separate tracks (as in
Figure 4). The inset shows greater detail at the BEAD-1 locus.
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DISCUSSION

A chromatin based approach to unbiased boundary
element prediction

Boundary elements are known to organize chromatin into
functionally distinct domains and to prevent regulatory
crosstalk between domains. Distinct boundary elements
may act through a variety of mechanisms, and accordingly
boundaries have been characterized phenotypically based

on their activity rather than the presence of characteristic
features. Thus, boundary element prediction algorithms
that use pattern detection methods to search for known
boundary element characteristic features will result in
biased sets of predictions that only reflect one or
another of the known mechanisms of action. This funda-
mental challenge to the computational prediction of
boundary elements motivated our development and appli-
cation of an unbiased algorithm that predicts the locations

Figure 7. Chromatin signatures of predicted boundary elements. (A–F) The 8-kb boundary regions are shown together with 8-kb flanking hetero-
chromatic and euchromatic regions. Normalized levels of DNase I hypersensitivity (A), fold enrichment profiles of 12 histone acetylations (B),
normalized levels of CTCF binding (C), normalized levels of YY1 binding (D), fold enrichment profiles of H3K27 mono-, di- and tri-methylations
(E) and fold enrichment profiles of H3K9 mono-, di- and tri-methylations (F) are compared for flanking regions and boundaries.
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of putative boundary elements genome wide based on
their functional consequences, with respect to both chro-
matin and transcription states, as opposed to any intrinsic
characteristics that they may possess.

Our approach to boundary element prediction relies on
the delineation of adjacent active (euchromatic) and re-
pressive (heterochromatic) domains based on the
genomic distributions of active versus repressive histone
modifications. RITs between adjacent chromatin domains
are further interrogated for the presence and location of
putative boundaries using distributions of Pol II-binding
sites that serve as marks of active cell type-specific tran-
scription. Application of this two-stage chromatin
boundary element prediction algorithm (Figure 1) to
CD4+ T cell data resulted in the prediction of 2542
boundary elements across the human genome. The role
of these predicted boundary elements in cell type-specific
chromosomal domain organization was confirmed by the
finding that genes immediately flanking boundaries are
more highly differentially expressed in CD4+ T cells
than seen for other human cells/tissues (Figure 5).
Having predicted boundary elements in this way, we
then analyzed the putative boundaries for the presence
of a variety of features that may yield specific clues as to
their potential mechanisms of action.

Models for human boundary element activity

Previous studies on boundary elements have suggested
competing models that explain the mechanisms underlying
boundary element activity. The fixed model for boundary
element activity implicates specific DNA sequences and
their associated proteins, whereas the transcriptional
interference model emphasizes the role of transcription
from non-protein-coding transcriptional units. We have
previously noted that these two models are not necessarily
mutually exclusive (14). Under the fixed model,
boundaries are precisely located and contain specific se-
quences that form discrete physical barriers between
domains. Specific sequence features are also needed to
recruit Pol II and Pol III machineries for the transcrip-
tional interference model, and transcriptional units that
act as boundaries may also form physical barriers that
block the propagation of repressive chromatin. The
features uncovered for our predicted boundary elements
can similarly be taken to suggest that the mechanisms of
human boundary activity include aspects of both the fixed
and transcriptional interference models.

Analysis of the predicted boundary elements and
surrounding RITs revealed two main features:
(i) position-specific acetylation and open chromatin coinci-
dent with the recruitment of transcription factors such as
EVI1, YY1 andUSF (Figure 7A, B,D andTable 1), and (ii)
a gradual transition across RITs, from heterochromatin to
euchromatin, of increasing histone lysine methylation and
non-protein-coding RNA levels (Figures 7E, F, 8A and B).
Considered together, these two observations lead us to
propose a possible model for human boundary element
activity (Figure 10). Under this model, the specific positions
of boundaries are established via the local recruitment of
histone acetyltransferase (HAT) activity and transcription
factors leading to the expression of non-protein-coding
RNAs (Figure 10A). Boundary element function is main-
tained more broadly across RITs by the superposition of
distinct and opposing chromatin modifying activities
leading to the observed gradual transitions between hetero-
chromatic and euchromatic histone lysine methylation and
mediated by transcriptional interference (Figure 10B).
Predicted boundary elements reside in regions of dis-

tinctly open chromatin and also show position-specific ac-
cumulations of 12 different histone acetylation marks
(Figure 7A and B). Previous studies have suggested
boundary element activity is dependent upon the local re-
cruitment of HAT activities to counteract the spread of
repressive chromatin (71,84,85). The patterns of histone
lysine acetylation enrichment observed at position-specific
location within predicted boundaries are in agreement
with already reported prominent role for histone acetyl-
ation at boundary elements and further corroborate the
boundary prediction method used here.
Along with the position-specific chromatin features and

recruitment seen at predicted boundaries, we also observe
distinct chromatin dynamics spread across the RITs that lie
between adjacent facultative heterochromatic and euchro-
matic domains. For instance, H3K27 and H3K9
mono-methylation levels increase steadily from hetero-
chromatic domains across boundary element containing
regions and into euchromatic domains, whereas H3K27
and H3K9 di- and tri-methylation levels gradually
decrease across the same intervals (Figure 7E and F).
This pattern can be taken to indicate a unidirectional
activity of histone demethylation across RITs from hetero-
chromatin to euchromatin. At the same time, a number of
other mono- di- and tri-methylation histone marks show
steady accumulations across RITs from heterochromatin

Table 1. Protein factors enriched in predicted boundary elements

Protein No.a P-valueb Annotationsc

EVI1 382 0.022 Interacts with histone deacetylase, histone methyltransferases and CBP and P/CAF
CEBP 249 2.27E-17 Interacts with CBP and p300 and promotes histone acetylation
YY1 157 1.44E-17 Directs histone deacetylases and HATs to promoter
CREBP1 150 5.87E-24 Essential in H2B and H4 acetylation, can interact with CBP HAT domain
USF 140 2.50E-28 Recruits histone modifications at vertebrate boundary elements

aThe number of boundary elements containing the corresponding protein factor-binding sites.
bThe statistical significance of the enrichment of the protein factor in predicted boundary elements assessed by hypergeometric test.
cFunctional annotations for the proteins based on the relevant literature (cited in the text).
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to euchromatin (Figure 8A) and are indicative of increased
transcriptional activity (Figure 8B) and/or the action of
chromatin modifying enzymatic complexes associated
with transcriptional elongation.
H3K79 mono-, di- and tri-methylation all show progres-

sively increasing levels across RITs from facultative hetero-
chromatin to euchromatin (Figure 8A). While the exact
function of H3K79 methylation is currently unknown,

accumulation of these marks, catalyzed by the lysine
methyltransferase (KMT) DOT1 (86), is correlated
with actively transcribed protein-coding genes (87).
Accordingly, it is possible that H3K79 methylation also
marks active transcription of non-protein-coding RNAs
across RITs as observed here (Figure 8A and B). In fact,
H3K79 methylation has previously been implicated in the
stable maintenance of distinct chromatin states in yeast and
mammalian cells (88), and our data also suggests a possible,
and previously unexplored, role for DOT1 in the establish-
ment and maintenance of chromatin boundaries.

Transcriptional regulators at predicted boundary elements

The observations that predicted boundary elements
contain binding site motifs for a number of proteins
implicated in both the regulation of transcription and chro-
matin remodeling (Table 1), along with experimentally
characterized YY1 binding (Figure 7D), are consistent
with a role for transcriptional interference in human
boundary element activity. Involvement of transcription
factors capable of maintaining a local active chromatin en-
vironment at boundaries has previously been reported by
the Felsenfeld group in the context of the USF1 factor (70).
USF transcription factors can regulate Pol II transcription
via direct interaction with components of the basic tran-
scription machinery, such as TFIID and TBP associated
factors (89), or through the recruitment of co-factors
such as the HAT PCAF or the H3K4 histone methyl-
transferase SET7/92 (71). Here, we observe a significant
enrichment of the USF-binding site motif (E-box
element) among predicted boundaries. Thus, we speculate
that USF participates in the establishment and/or mainten-
ance of human boundary element activity by triggering
transcriptional interference, which may be mediated, at
least in part, by the action of the aforementioned
co-factors.

EVI1 is another sequence-specific transcription regula-
tor with binding sites that are over-represented among the
boundary elements predicted here (Table 1). EVI1 has
been shown to interact with the HAT PCAF, the histone
deacetylase HDAC1 and the histone methyltransferases
SUV39H1 and G9A (63,64). Thus, we speculate that
EVI1 may function in boundary element activity by
serving as a switch between distinct chromatin remodeling
activities thereby mediating the transition from hetero-
chromatin to euchromatin in a cell type-dependent
manner.

CONCLUSIONS AND PROSPECTS

Chromatin boundary elements aremajor players in genome
organization and regulation, but at this time there are rela-
tively few examples of known boundary elements. Here, we
report a large collection of putative boundary elements for
CD4+ T cells that span the entire human genome.
The boundaries reported here are computational predic-
tions and thus must be treated with all due caution; never-
theless, analysis of the features of these boundaries
yields results that are consistent with their roles as chroma-
tin related regulatory elements. We hope that the

Figure 8. Chromatin and transcriptional transitions across predicted
boundary elements. (A–C) The 8-kb boundary regions are shown
together with 8-kb flanking heterochromatic and euchromatic regions.
Fold enrichment profiles of eight histone methylations (A), log2 trans-
formed normalized non-protein-coding RNA-seq tags (B) and fold en-
richment profiles of H3K4 histone modifications (C) are compared for
flanking regions and boundaries.
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Figure 9. Features of boundary elements containing RNA genes. (A and B) The 8-kb boundary regions are shown together with 8-kb flanking
heterochromatic and euchromatic regions. Log2 transformed normalized RNA-seq tags (A) and normalized Pol III-binding levels (B) of boundary
elements containing RNA genes are compared for flanking regions and boundary regions. (C) Example of boundary element containing tRNA genes.
The predicted boundary element is shown as the green band. ChIP-seq peaks for active and repressive histone modifications, CTCF binding, Pol II
binding and RNA-seq tags along with the locations of euchromatic domains, heterochromatic domains and RefSeq genes are illustrated as separate
tracks (as in Figure 2). Pol III binding (yellow bars) and RNA genes are also shown separately.
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boundaries predicted here can serve as a prioritized
list of targets for further experimental validation.
If validated experimentally, the predictions reported
here could help to substantially enlarge the catalog of
known chromatin boundary elements. Our feature
analysis of the predicted boundaries also raises the
possibility of a mechanism of chromatin boundary
activity in the human genome related to transcriptional
interference. This possibility awaits further detailed
investigations.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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